JSE at Wiley-Blackwell


Accepted Articles

Early View

Current Issue


  Manuscript Submission

Online Submission

Instructions for Authors

Copyright Transfer Agreement

About JSE

Aims & Scope

Editorial Board

Online Office

Sponsors & Publisher

Partner Journals

Other Journals from IB-CAS


Plant Diversity and Resources

Journal of Systematics and Evolution

Volume 56 Issue 3, Pages 231242.

Published Online: 13 Mar. 2018

DOI: 10.1111/jse.12306

Full Text HTML
Full Text PDF
Print this page
Towards a better understanding of the Chenopodium album aggregate (Amaranthaceae) in the Middle East: A karyological, cytometric and morphometric investigation

Farzaneh Habibi1,2, Petr Vt1,3, Mohammadreza Rahiminejad2, and Bohumil Mandk1,3*

1The Czech Academy of Sciences, Institute of Botany, Zmek 1, CZ-252 43, Průhonice, Czech Republic

2Department of Biology, Faculty of Sciences, University of Isfahan, Isfahan, Iran

3Faculty of Environmental Sciences, Czech University of Life Sciences Prague, Kamýck 129, Praha 6 C Suchdol, CZ-165 21, Czech Republic

Keywords: Chenopodium, chromosome numbers, flow cytometry, multivariate morphometrics, taxonomy.


The study of variation in nuclear genome size, especially when combined with common garden experiments, significantly contributes to disentangling interspecies relationships within taxonomically complicated plant groups. The Chenopodium album aggregate is among the morphologically most variable groups and consists of many weakly differentiated cosmopolitan entities. We analysed nuclear genome size variation in diploid and polyploid species of the aggregate from Iran using flow cytometry of 282 accessions from 88 populations of 7 species. To this end, we also determined chromosome numbers and performed a morphometric study to reveal the extent of intraspecific morphological variation. We found that Iranian species are exclusively diploid (C. vulvaria), tetraploid (C. novopokrovskyanum, C. strictum, C. sosnowskyi and C. chaldoranicum) or hexaploid (C. album subsp. album, C. album subsp. iranicum and C. opulifolium). Six homogeneous relative genome size groups were distinguished among the species studied. Our morphometric study surprisingly revealed that under similar ecological conditions Chenopodium species are morphologically stable and well distinguishable, exhibited very little morphological variation. Hence, immense variation in leaf shapes, branching and inflorescence organization seen in the field has not been repeated under greenhouse conditions. The only exception was C. album s. str. which exhibited numerous morphotypes, covering the variation of remaining species.

Copyright © 2017. The Editorial Office, Journal of Systematics and Evolution, Institute of Botany, CAS
No. 20 Nanxincun, Xiangshan, Beijing 100093, China
Tel.: +86 10 62836132; 62836572    Fax:+86 10 62836132
E-mail: jse@ibcas.ac.cn