松属针叶角质层内表面结构的扫描电镜观察

胡玉熹
（中国科学院植物研究所，北京）

摘要 作者在扫描电镜下，比较观察了松属17种2变种针叶角质层内表面的结构特征。结果表明，针叶角质层内表面的角质颗粒突起与凹陷条纹变化不甚明显，但胞间不均的特征差异较为显著。如单维管束松亚属（白皮松组除外）为红松型，双维管束松亚属为油松型，而白皮松组则为白皮松型。此一特征为松属的分类研究，又提供了一个新的证据。

本文综合讨论了松属针叶的结构及角质层内、外表面结构特征，木材解剖，木材管胞内壁的胞间特征，树皮显微结构，以及染色体组型分析等资料，作者认为：松属中两个亚属的差异是符合自然的，同时将原属单维管束松亚属中的白皮松组分出来，自成白皮松亚属也是合适的。

关键词 松属；针叶角质层

关于松属植物的针叶解剖，及针叶表面角质层的研究，已有不少报道[5,6,11,12,13,14,15,21]。近年来，由于扫描电镜的应用，不仅对化石及现存松柏类植物针叶角质层进行了深入的研究，而且对叶角质层内表面的细胞结构也逐渐引起人们的注意。

Alvin和Boulter在研究杉科植物针叶角质层内表面结构的同时，提供了一个较好的角质层分离方法[13]。 Stockey与Tuyler依据叶角质层内表面的细胞特征，将南洋杉属Araucaria划分为两个类群[17]。Miranda与Chapheker对松科Pinaceae9个属（其中未包括银杉属Cathaya）针叶角质层内表面的细胞结构进行了研究，认为不同的结构类型对松科大多数属种间的分类，以及系统发育的研究，均有一定的参考价值[19]。最近，作者观察了杉叶角质层内表面的结构，其不规则颗粒状的角质突起，部分颗粒连接成网状，胞间凸缘发达，具有显著的细胞隔

本文主要以国产松属植物为材料，在扫描电镜下，比较观察了针叶内表面的结构特征，从而进一步评价这些特征在松属分类中的价值；同时，还结合松属植物营养体解剖结构方面的有关资料，讨论了该属的分类问题。

材料与方法

供试的松属种类共17种，2变种（详见表1）。其中有经FAA溶液固定的标本针叶，也有从腊叶标本制取的干叶子，经水煮后，保存在FAA溶液中备用。

每种均取成熟针叶中部，长约5mm的长柄，浸入20%的三乙醇胺溶液中，在40℃恒温箱中加热处理7~10小时[8]。此时，针叶角质层与内部组织自然分离，形成半透明状的小圆筒。然后在解剖镜下，用解剖刀从圆筒中间剖开，再用毛笔清除残存角质层内表面的所有细胞，经蒸馏水换洗数次后，通过各级酒精脱水干燥。在样品台上粘贴材料时，将角质层内表面朝上，并摊平于双面胶纸上。真空喷镀金膜，最后移入Hitachi S-450扫描电镜下，比较观察了松属17种2变种针叶角质层内表面的结构特征。结果表明，针叶角质层内表面的角质颗粒突起与凹陷条纹变化不甚明显，但胞间不均的特征差异较为显著。如单维管束松亚属（白皮松组除外）为红松型，双维管束松亚属为油松型，而白皮松组则为白皮松型。此一特征为松属的分类研究，又提供了一个新的证据。

本文综合讨论了松属针叶的结构及角质层内、外表面结构特征，木材解剖，木材管胞内壁的胞间特征，树皮显微结构，以及染色体组型分析等资料，作者认为：松属中两个亚属的差异是符合自然的，同时将原属单维管束松亚属中的白皮松组分出来，自成白皮松亚属也是合适的。

关键词 松属；针叶角质层

关于松属植物的针叶解剖，及针叶表面角质层的研究，已有不少报道[5,6,11,12,13,15,21]。近年来，由于扫描电镜的应用，不仅对化石及现存松柏类植物针叶角质层进行了深入的研究，而且对叶角质层内表面的细胞结构也逐渐引起人们的注意。

Alvin和Boulter在研究杉科植物针叶角质层内表面结构的同时，提供了一个较好的角质层分离方法[13]。 Stockey与Tuyler依据叶角质层内表面的细胞特征，将南洋杉属Araucaria划分为两个类群[17]。Miranda与Chapheker对松科Pinaceae9个属（其中未包括银杉属Cathaya）针叶角质层内表面的细胞结构进行了研究，认为不同的结构类型对松科大多数属种间的分类，以及系统发育的研究，均有一定的参考价值[19]。最近，作者观察了杉叶角质层内表面的结构，其不规则颗粒状的角质突起，部分颗粒连接成网状，胞间凸缘发达，具有显著的细胞隔

本文主要以国产松属植物为材料，在扫描电镜下，比较观察了针叶内表面的结构特征，从而进一步评价这些特征在松属分类中的价值；同时，还结合松属植物营养体解剖结构方面的有关资料，讨论了该属的分类问题。

材料与方法

供试的松属种类共17种，2变种（详见表1）。其中有经FAA溶液固定的标本针叶，也有从腊叶标本制取的干叶子，经水煮后，保存在FAA溶液中备用。

每种均取成熟针叶中部，长约5mm的长柄，浸入20%的三乙醇胺溶液中，在40℃恒温箱中加热处理7~10小时[8]。此时，针叶角质层与内部组织自然分离，形成半透明状的小圆筒。然后在解剖镜下，用解剖刀从圆筒中间剖开，再用毛笔清除残存角质层内表面的所有细胞，经蒸馏水换洗数次后，通过各级酒精脱水干燥。在样品台上粘贴材料时，将角质层内表面朝上，并摊平于双面胶纸上。真空喷镀金膜，最后移入Hitachi S-450扫描电镜下，比较观察了松属17种2变种针叶角质层内表面的结构特征。结果表明，针叶角质层内表面的角质颗粒突起与凹陷条纹变化不甚明显，但胞间不均的特征差异较为显著。如单维管束松亚属（白皮松组除外）为红松型，双维管束松亚属为油松型，而白皮松组则为白皮松型。此一特征为松属的分类研究，又提供了一个新的证据。

本文综合讨论了松属针叶的结构及角质层内、外表面结构特征，木材解剖，木材管胞内壁的胞间特征，树皮显微结构，以及染色体组型分析等资料，作者认为：松属中两个亚属的差异是符合自然的，同时将原属单维管束松亚属中的白皮松组分出来，自成白皮松亚属也是合适的。

关键词 松属；针叶角质层

关于松属植物的针叶解剖，及针叶表面角质层的研究，已有不少报道[5,6,11,12,13,15,21]。近年来，由于扫描电镜的应用，不仅对化石及现存松柏类植物针叶角质层进行了深入的研究，而且对叶角质层内表面的细胞结构也逐渐引起人们的注意。

Alvin和Boulter在研究杉科植物针叶角质层内表面结构的同时，提供了一个较好的角质层分离方法[13]。 Stockey与Tuyler依据叶角质层内表面的细胞特征，将南洋杉属Araucaria划分为两个类群[17]。Miranda与Chapheker对松科Pinaceae9个属（其中未包括银杉属Cathaya）针叶角质层内表面的细胞结构进行了研究，认为不同的结构类型对松科大多数属种间的分类，以及系统发育的研究，均有一定的参考价值[19]。最近，作者观察了杉叶角质层内表面的结构，其不规则颗粒状的角质突起，部分颗粒连接成网状，胞间凸缘发达，具有显著的细胞隔

本文主要以国产松属植物为材料，在扫描电镜下，比较观察了针叶内表面的结构特征，从而进一步评价这些特征在松属分类中的价值；同时，还结合松属植物营养体解剖结构方面的有关资料，讨论了该属的分类问题。

材料与方法

供试的松属种类共17种，2变种（详见表1）。其中有经FAA溶液固定的标本针叶，也有从腊叶标本制取的干叶子，经水煮后，保存在FAA溶液中备用。

每种均取成熟针叶中部，长约5mm的长柄，浸入20%的三乙醇胺溶液中，在40℃恒温箱中加热处理7~10小时[8]。此时，针叶角质层与内部组织自然分离，形成半透明状的小圆筒。然后在解剖镜下，用解剖刀从圆筒中间剖开，再用毛笔清除残存角质层内表面的所有细胞，经蒸馏水换洗数次后，通过各级酒精脱水干燥。在样品台上粘贴材料时，将角质层内表面朝上，并摊平于双面胶纸上。真空喷镀金膜，最后移入Hitachi S-450扫描电镜下，比较观察了松属17种2变种针叶角质层内表面的结构特征。结果表明，针叶角质层内表面的角质颗粒突起与凹陷条纹变化不甚明显，但胞间不均的特征差异较为显著。如单维管束松亚属（白皮松组除外）为红松型，双维管束松亚属为油松型，而白皮松组则为白皮松型。此一特征为松属的分类研究，又提供了一个新的证据。
表 1 供试松属种类及采集地点

<table>
<thead>
<tr>
<th>种名</th>
<th>科名</th>
<th>采集地点</th>
</tr>
</thead>
<tbody>
<tr>
<td>单维管束松亚属</td>
<td>Subgen. Strobus</td>
<td>长叶松 P. palustris (江西 Jiangxi)</td>
</tr>
<tr>
<td>华松 P. armandii (江西 Jiangxi)</td>
<td></td>
<td>海南松 P. pinaster (南京 Nanjing)</td>
</tr>
<tr>
<td>白皮松 P. bungeana (北京 Beijing)</td>
<td></td>
<td>麋松 P. rigida (南京 Nanjing)</td>
</tr>
<tr>
<td>西藏白皮松 P. gerardiana (西藏 Xizang)</td>
<td></td>
<td>喜马拉雅长叶松P. roxburghii (西藏 Xizang)</td>
</tr>
<tr>
<td>松 P. griffithii (西藏 Xizang)</td>
<td></td>
<td>棉子松 P. sylvestris var. mongolica (黑龙江 Heilongjiang)</td>
</tr>
<tr>
<td>红松 P. koraiensis (吉林 Jilin)</td>
<td></td>
<td>油松 P. tabulaeformis (北京 Beijing)</td>
</tr>
<tr>
<td>日本五针松 P. parviflora (浙江 Zhejiang)</td>
<td></td>
<td>黄山松 P. taiwanensis (安徽 Anhui)</td>
</tr>
<tr>
<td>双维管束松亚属</td>
<td>Subgen. Pinus</td>
<td>火焰松 P. taeda (南京 Nanjing)</td>
</tr>
<tr>
<td>赤松 P. dalisflora (浙江 Zhejiang)</td>
<td></td>
<td>黑松 P. thunbergii (浙江 Zhejiang)</td>
</tr>
<tr>
<td>萌芽松 P. echinata (南京 Nanjing)</td>
<td></td>
<td>云南松 P. yunnanensis (南京 Nanjing)</td>
</tr>
</tbody>
</table>
| 滇麻松 P. kesiya var. langbianensis (云南 Yunnan) | | |}

描电镜样品室中，调整样品台使其成 30 度倾斜面，在 20 千伏加速电压下，观察并照相。

结果与讨论

（一）松属针叶角质层内表面的雕纹特征

在扫描电子显微镜下，比较观察松属各种针叶角质层内表面的特征为：气孔两侧保卫细胞的角质层表面，有许多细条纹状雕纹及小颗粒状突起。气孔周问的副卫细胞及表皮细胞的角质层内表面雕纹，一般均为大小不等的角质棉状突起（图版 1:1, 2, 5, 6）。值得注意的是白皮松和西藏白皮松的角质颗粒状突起较低，裂缝状的凹陷也多连成网状（图版 1:3, 4）。此等特征在白皮松中表现更为明显。

Miranda 和 Chaphekar 认为松科各种的副卫细胞及表皮细胞角质层内表面雕纹类型变化较大，并根据角质突起及凹陷的特征，分为 9 种雕纹类型，其中松属具 5 种[6]。而我们观察的结果与其略有出入。事实上，除白皮松和西藏白皮松以外，按雕纹类型分种似较困难。

（二）胞间凸缘的特征

叶的角质层内表面由副卫细胞和表皮细胞之间的边界所形成的一种突出的凸缘系统，在扫描电镜下其三维结构特征十分清晰。

在松属中，依据胞间凸缘的特征，明显地可区分为以下三种类型：1. 红松型：胞间凸缘不发达，呈浅波浪形的单凸缘（single flange），其间常见有小的间断。在气孔两侧的胞间凸缘波浪形较不明显，无间断。凸缘表面一般具有大小不等的颗粒状突起（图版 1:1, 2）。本文所观察的单维管束松亚属的各个种中，除白皮松与西藏白皮松以外，均属此种类型。 2. 白皮松型：胞间凸缘极为发达，除表皮细胞的两端及气孔两侧的胞间凸缘趋于平直以外，均呈明显的深波浪形，单凸缘。每个细胞四周的凸缘，犹如一堵高耸弯曲的“围墙”。（图版 1:3, 4）。此类型仅为白皮松及西藏白皮松属之。 3. 油松型：为双凸缘（double flange），胞间凸缘发达，平直、表面平滑，凸缘上部中央有一条下陷的沟槽；凸缘基部间断分布有内凹的腔室，使呈棱形构造，每条凸缘极像一座多孔的“桥梁”（图版 1:5, 6）。双维管束松亚属各个种属之。 双凸缘的现象头一次在化石冷杉属植物中报道过[6]。
此外还见于松科中的黄杉属植物，及单维管束松亚属中，扫帚松 Pinus peuce 气孔之间的胞间凸缘[1]。在双维管束松亚属各个种的气孔周围细胞的凸缘，一般都是单的单凸缘（图版 1:5）。

（三）松属分类问题的讨论 自从 Shaw (1914) 对松属 Pinus L. 作了进一步的系统分类以来，已有不少报道[12，其中仅以松属植物营养体结构特征，讨论该属的分类问题，就有以下几个方面：1. 木材解剖的研究，依据射线管胞内壁平滑，或具锐齿等特征，可将松属分为软木松与硬木松两大类，这与植物分类学上分为单维管束松亚属和双维管束松亚属完全一致[13,14]。但在软木松类中的白皮松，其射线管胞内壁锐齿状，单维管束胞长伸向壁上具缘纹孔多而明显，交叉纹孔松木型，“1-6 个，常为”2-4 个等。它既兼有软木松（单维管束胞长伸向壁多具缘纹孔）的特点，又具有硬木松（交叉纹孔松木型，射线管胞内壁锐齿明显）的特征，因此系为一中间型树种[15]。2. 在透射电镜下，研究松梢类植物管胞内壁，或纹孔缘、纹孔室表面的瘤层结构，已有不少报道[17,18,19]。结果表明，在许多科属中，瘤层的结构图式较相似，但值得注意的是在松属的两个亚属之间，存在着明显的差别。例如单维管束松亚属的管胞内壁表面，瘤层不明显或缺如，而双维管束松亚属则很发达，同时，瘤的数量与直径大小，又恰好与射线管胞内壁锐齿的发育程度相吻合[14]。最近，周崇还比较观察了中国松属木材管胞瘤层的结构，进一步指出：在单维管束松亚属中的白皮松，其木材管胞内表面及纹孔部分，具有明显瘤状结构，这与单维管束松亚属瘤层不明显或缺如的特征不符，从而提出成立白皮松亚属的建议[16]。3. 从树皮的显微结构看，松属两亚属也存在着明显的差异。单维管束松亚属树皮的横切面上，周皮呈弯曲形及重叠排列；新形成的外树皮组织径向稍有扩展；韧皮薄壁组织细胞中的结晶，主要为长方形的草酸钙结晶；树脂道较丰富。双维管束松亚属的树皮为切向平行排列；新形成树干皮上，韧皮薄壁组织与射线和向明显地扩展，筛胞多被挤挤；韧皮薄壁组织细胞中具两头尖的长柱状结晶；树脂道偶见或缺如[17]。值得注意的是，白皮松树皮中的韧皮薄壁组织细胞，具长方形结晶，树脂道丰富等特征与单维管束松亚属一致，但其树皮最外层只保留一层周皮，无内、外树皮之分，以及在横切面上，韧皮射线有弯曲等，又是它在松属中独具一格的特征[10]。4. 松属针叶角质层及叶肉内部的结构，可以作为区分两个亚属的依据。单维管束松亚属具 1 个维管束；皮下层单层；树皮层的精细胞壁较薄；气孔属红松型，并分布于叶腹面两侧；副卫细胞长矩形，4-10 个；连接细胞的两侧无石细胞。双维管束松亚属具 2 个维管束；皮下层的层次变化较大；树皮层精细胞壁较厚；气孔油松型，分布于背腹两面；副卫细胞圆球，四边形或环状，4-14 个，具石细胞。另外，从针叶中转输管胞所占比例看，单维管束松亚属的比例较大，不少转输管胞彼此邻接；而双维管束松亚属的比例较小，转输管胞之间常有转输薄壁组织细胞离开[19]。同样值得注意的是，白皮松的针叶中具 1 个维管束，气孔红松型等虽与单维管束松亚属相同。但是气孔分布于背腹两面，副卫细胞为四边形或近梯形，气孔间连接细胞的两侧具石细胞等特征，又与双维管束松亚属相近。可见白皮松兼有松属两个亚属的特征，并认为此系反映了双亚属之间的自然连系[16]。5. 松属染色体 12 对（2N-24），其中有 11 对染色体为等臂染色体，第 12 对为一对小的近中着丝粒染色体[20]。在松属的油松群（Group Laricines）中，则有两对小的近中着丝粒染色体[21]。最近，Paul Macpherson 和 Filion (1981) 报道，由于结构异染色质（C-heterochromatin），在双维
管束松亚属中，具有近着丝粒结构染色质（pericentromeric C-heterochromatin），而单维管束松亚属中则缺如[21]，两亚属明显不同。另外，松属各个种的核型，染色体数比紊乱的出现，也是重要鉴定特征之一。虽然白皮松染色体的组型与松属其它许多种类基本一致，但在第2、6、10及12对染色体上，均有次缢痕出现，其中唯独在第12对染色体的短臂上，次缢痕的出现频率高达85%。这就是白皮松不同于松属其它种的特征标志之一[22]。

此外，由松属的外部形态及其心材的化学成分等资料看，两亚属的区分也十分明显；而单维管束松亚属中的白皮松组则兼有这两个亚属的特征，又具有本组的特征。

本文对松属针叶角质层内表面结构的研究，又为该属提供了一个新的分类特征依据。松属两亚属中，针叶角质层内表面的胞间凸缘类型明显不同，其中单维管束松亚属（白皮松组除外）属红松型；双维管束松亚属为中国型。白皮松组不仅胞间凸缘的特征与松属其它各种明显不同，而且角质层内表面的雕纹也与两亚属略有差别。

综上所述，松属中两亚属的划分是符合自然的。同时作为许多作者建议，将白皮松组（包括白皮松和西藏白皮松两种）由原属单维管束松亚属中分出来，自成白皮松亚属的观点，也为我们研究的结果所支持。

参考文献

[1] 中国科学院植物研究所形态室等，1978：松科——形态结构与发育。科学出版社。
[3] 成波发、孙成志、李志明，1985：中国松属两种的木材解剖特性和木材分类的研究。中国林业科学研究院，木材工业研究所。
[7] 颜德风（Erdman，H）（梅德夫译），1958：松类树木心材成分的化学和它在分类学上的重要性，“第14届国际林学会议及应用化学会议文集，P. 141—165。科学出版社。
[12] Florin，R.，1958：On Jurassic Taxads and Conifers from North-Western Europe and Eastern Greenland。Acta Hottendorfian。Band 17(10)：259—388。
[18] Lisee，E.，1965：The warty layer。In Cote，W. “Cellular ultrastructure of woody plants”，Syracuse university press，New York。
SEM OBSERVATION OF THE INNER SURFACE STRUCTURE OF NEEDLE CUTICLES IN PINUS

Hu Yu-shi

(Institute of Botany, Academia Sinica, Beijing)

Abstract Comparative investigation on the inner surfaces of needle cuticle of Pinus was made for 17 species and two varieties under SEM. It is shown that the differences in protrusions and depressions of the internal cuticle surfaces of needles in the genus are not remarkable. However, the features of intercellular flanges are rather distinct and three types can be distinguished. They are: (1) Subgen. Strobus (Sweet) Rehd. (except Sect. Parrya) is of the Pinus koraiensis type; (2) Subgen. Pinus is of the P. tabulaeformis type; (3) Sect. Parrya Mayr of Subgen. Strobus (Sweet) Rehd is of the P. bungeana type. The character may provide taxonomy of the genus Pinus with a new piece of evidence.

Based on the features mentioned above, together with many others, such as wood anatomy, warts of wood tracheids, bark structure, needle anatomy and cuticle structure as well as karyotypic analysis in Pinus, the author considers that division of Pinus into two subgenera is natural and that separation of Sect. Parrya Mayr from Subgen. Strobus (Sweet) Rehd. and the subsequent establishment of the subgenus Parrya of its own are also reasonable.

Key words Pinus; Needle cuticle
图版 1

Hu Yu-shi: SEM Observation of the Inner Surface Structure of Needle Cuticles in *Pinus*

1—6. 扫描电镜下的针叶角质层内表面结构。

1. 乔松，×750；2. 华山松，×2300。示细胞间凸缘不发达，呈波浪状的间断单凸缘。3. 白皮松，×1200；4. 西藏白皮松，×2300。示发达的胞间凸缘，呈深波浪状的连续单凸缘。5. 梯子松，×730；6. 喜马拉雅长叶松，×2300。示发达的胞间凸缘，平直的双凸缘。