AREOGRAPHY OF THE ENDEMIC GENERA OF SEED PLANTS IN CHINA

Ying Tsun-shen

(Institute of Botany, Academia Sinica, Beijing 100093)

Summary Phytogeography is interested in the delimitation of floristic sets and in the origin of their different elements, while areography focuses its attention on the form and size of geographical range of species and other taxa. Ecology or, more precisely, ecogeography, answers questions on the reasons for the form and size of areas. From the current distribution maps of the 247 endemic genera of seed plants of China, it is possible to envisage five main models of partitioning: contiguity (A1-A2); inclusion (B1-B2); overlap (C1-C2); solitary (D1-D2) and disjunction (E1-E2). Many species appear to be limited in at least part of their geographic ranges by physical factors, such as temperature regime, water availability, and geographic and topographic accidents. For an endemic genus that has not reached a barrier, its size of area depends upon the capacity of species to adapt to different enviroments and to colonize different habitats. *Speranskiia* with three species, for example, has a fairly extensive range in eastern China, but within its area it grows on forested slopes, in thickets, in weedy places, on roadsides, near habitations and in steppe area. The genus *Notoseris* with 14 species, however, has a smaller range across south central and southeastern China, but within its area its local distribution is confined strictly to the edges of forests and grassy slopes in forested areas. Above examples show that the genera with a high number of species are not certainly more widespread than the genera with a low number of species. The conditions of topography that modify the shape of climatic regions (such as altitude, basin, proximity to large bodies of water, etc.) also modify the shape of major areas, because climatic boundaries constitute the principal boundaries of floristic and vegetational areas. More local features of topography affect the shape of smaller areas and determine the shape of areas. In
the study of generic areas, it should be clearly emphasized that it is of extreme importance to focus attention on the distributional patterns of species, which may show great significance for the regionalization of flora and vegetation.

Key words Areography; Endemic genera; Seed plants; China

摘要 本文讨论了分布区的概念和分布区周界的划定方法，认为邻近距离平均法（mean propinquity method）对划定分布区的周界具有较大的科学性和可用性。根据 247 幅中国种子植物特有属的分布区图及其属内各种在属分布区范围内的分布情况，我们将中国种子植物特有属划分为 5 个分布区类型。本文还对中国种子植物特有属分布区与地形和气候条件的关系，以及与植被和植物区系界限的关系进行了分析，提出制约分布区形状和大小的主要决定因素，并指出种在属分布区内的分布规律的研究对次一级植物区系分区分或植被区划研究具有重要意义。

关键词 分布区学；特有属；种子植物；中国

1 分布区概念

分布区是任一植物分类群或植物群落所在地表（或水域）出现的全部具体分布地点。我们所研究的分布区不仅是地理现象，同时也是历史现象。一个分布区还反映了某分类群或植物群落与一定的历史和现今的生存条件的关系，所以，分布区也是生态现象。因此，植物分布区学与生态学和地理学有着极为密切的联系。

2 分布区周界的划定方法

分布区的绘制方法是多种多样的，通常采用的点图法和轮廓法都有其不足之处，前者虽然可提供生长地点的具体概念，但缺乏正确的分布区边界的概念；后者虽有分布区边界的概念，但又难反映具体原始实际资料，常有随意定界之嫌。因此，兼用点图法和轮廓法来绘制分布区是比较完善的方法。然而，将种的全部分布地点标绘在空白地图上，然后勾划出分布区的轮廓时，尽管考虑到水域、山脉走向、地形、气候和植被等因素，但仍有一定的随意性。因此，我们采用邻近距离平均法（Mean propinquity method）（Rapoport，1982）似可弥补这方面的不足。这一方法主要基于两点：一是最接近两分布点的距离，二是图论上的“树”（“Tree”）的概念。其具体绘图步骤是：

(A) 将种的分布地点标绘在空白地图上，并用直线接所有最近的两分布点，这时形成接各分布点的“树”。此“树”表示各分布点之间的最小距离。

(B) 测量各分布点之间的直线距离，并计算出近距离平均值。即:

\[
\text{各分布点间距离值之和} \div \text{测量各分布点之间直线距离之次数} = \text{近距离平均值。}
\]

(C) 以近距离平均值为半径，以各分布点为圆心，作一弧形轮廓。所有弧形联接线即为分布区边界。所有超过平均值 2 倍的点自然就分开了（图 1）。

3 中国种子植物特有属的分布区类型

属的分布区是该属所包括的各个种的分布区的总和。但由于属内各种的分布区可能彼此分离，也可能彼此重叠，因此，属的分布区不是属内各个种的分布区的简单总和，所以在研究属的分布区时，若注意到属内各个种在属分布区范围内的分布及其地理分化情况，
可揭示出某些在研究属种分布区时所未发现的规律。属分布区的范围通常与经纬度、地形或山脉走向、森林分布、地理障碍（如水域、沙漠等）、水热条件以及属内各个种对不利生活环境的适应能力等有着密切的制约关系。因此，各属分布区的轮廓都是不一致的。根据247幅中国种子植物特有属的分布区图，就其属内各种在属分布区范围内的分布状况，我们将其划分为5个分布区类型（图2）。

连续分布区——邻接分布区（A1-A2），包含分布区（B1-B2），重叠分布区（C1-C2），孤立分布区（D1-D2）。

间断分布区（E1-E2）。如台湾杉属Taiwania，通脱木属Tetrapanax，异叶戟基属Whytokia，秦岭藤属Biondia，刚毛药花属Barthea和海南檬属Hainania等。在这些间断分布区中，有的属显然由于其分布区的退却变化而导致由完整的分布区变为间断的分布区。如台湾杉属，根据其化石资料，自晚白垩纪至第三纪上新世在欧洲、前苏联西伯利亚、北极圈内的斯匹次卑尔根群岛以及日本等地均有较广泛的分布，但由于晚第三世纪候变化，特别是第四纪冰期的影响以及台湾岛与中国大陆的分离导致其分布区的退却变化，遂形成现今的间断分布区。有些属则明显由于水域的隔离而形成间断分布区，如刚毛药花属Barthea，海南檬属Hainania，细子龙属Annesiodendron，伞花木属Euryocarbanus，紫菊属Notopterus，毛药花属Bostrichanthera；或者由于地理隔离和气候条件分异而形成间断分布，如通脱木属。但有些属，如七子花属Heptacodium集中分布于浙江北部和安徽东南部，另一分布点出现于鄂西。这类分布格局，看起来似乎是间断分布，而事实上，该属只是分布于在植物区系上两相邻“地区”（即E1-E13）的东侧。这类属的分布格局，无疑不能视为间断
4 分布区与地形和气候条件的关系

从生态植物地理角度看，我国三大自然地理区，对我国全部特有属的地理分布和生态具有明显的影响（杨俊生等，1993、1984）。若将藏东南的察隅和黑龙江的爱辉两线连成一线，则明显看出绝大部分特有属集中分布于此线以东，特别是此线以东的南部山区。到了当一月气温 0°C 等温线以南，年降水量 750～1500 mm 之间的地区。这是由于这一地区，在有限的空间内，生存条件的高度分异引起植物强烈的形态分化过程和从而导致分类群的高度繁荣和多样性形成的可能性。这一点可从表 1 中横断山脉地区（17）以及与其毗邻的云南高原地区（16）和华中地区（13）的特有属数最多的情况予以证实。然而，两晋在此地区，就各个特有属分布区的大小和形状来说，几乎没有两个属是相同的。有的属其分布区范围相当广泛，而有的属其分布区较为狭窄，甚至只用一个分布点来表示。这种差异情况，无疑是取决于经纬度、地形、气候、土壤、森林分布以及人类活动等生存条件的影响以及特有属的种类对这些条件在空间上的变异性及适应能力。

一般说，一个属中植物种对不同外界环境条件适应能力方面的可塑性（或差异性）越大，该属的分布区范围则越广泛；相反，一个属中的种类虽多，但这些种只适应于相当一致的生存条件，该属的分布区范围则较局限。例如，地构叶属 Sparsokia，只有 3 种，但其分布几达热带、亚热带和温带。就其生境来说，它生长于林区石质山坡、灌丛、草地、草原、路边或河边。其垂直分布幅度约达 1250 m。因而，该属的分布范围相对广泛。而紫菊属，约含 14 种，其垂直分布幅度与地构叶属相似，约 1200 m。但该属各种主要生长于林缘或林区草坡，生境相对单一，其分布限于亚热带林区。因而该属分布范围远较地构叶属的分布范围小。上述两例几乎说明，特有属的分布区大小，一方面取决于该属中各种与一定生存条件在空间上的变异性，另一方面取决于属内各种对于这些生存条件差异性的适应能力。

特有属分布区的轮廓，即其形状，正如分布区的大小一样，也是非常多样，制约分布区轮廓的因素大致上与制约分布区大小的因素相同。一般说，生存条件特别是水热条件由南向北的空间分化要比由东到西的变化迅速得多。因此，属种的分布区形状常呈椭圆形。但根据全部中国特有属的分布区形状看，相当一部分属分布区，并不与这一普遍规律
相符。这一情况，可能与中国特有属集中分布于华中、华南和康滇季风气候区有关。因为对这些属有决定意义的条件不是以它们出现地点的经度位置为转移，而是取决于出现地点受东南季风影响的强弱。中国地形一般可分为5类，即：平原、盆地、高原、丘陵和山地。有些具体属的分布区形状，与地形条件的依存性表现得十分明显。例如，铁线山柳属Clematoclethra 和金盔苣苔属Isometrum 等，大致分布于四川盆地周围山区。其分布区轮廓呈环状。这表明盆地对这些属的分布起着限制的作用。

Fig. 3 The relationships between the range of Speranskiia and the climatic, vegetational as well as floraistic regions.
1. The climatic division line; 2. The vegetational division line; 3. The floristic division line.
表 1 中国种子植物特有属在各“地区”的分布

Table 1 Distribution of seed plant genera endemic to China in various floristic regions and subregions.

<table>
<thead>
<tr>
<th>植物区 Region</th>
<th>I</th>
</tr>
</thead>
<tbody>
<tr>
<td>植物亚区 Subregion</td>
<td>IA</td>
</tr>
<tr>
<td>植物地区 District</td>
<td>1</td>
</tr>
<tr>
<td>特有属数 Number of endemic genera</td>
<td>0</td>
</tr>
</tbody>
</table>

5 分布区与植被和植物区系界线的关系及其意义

有些特有属的分布区的轮廓大致符合于一定的自然地理边界位置或者符合于在植被区划上和植物区划上不同区域之间的界线位置。例如，地构叶属，其分布区的西界不仅在气候区划上大致与华北暖温带半湿润区和华中亚热带湿润区的西界（中国科学院自然区划工作委员会，1959）相符；在植被区划上则大致与暖温带落叶阔叶林区和亚热带常绿阔叶林区的西界（吴征镒等，1980）相符，而且在植被区划上又与中国-日本森林植被区（E）（吴征镒，1979）相一致。倘若我们进一步分析地构叶属各种的分布情况，还可以发现以下分布规律，即该属的疮果地构叶 Speranskia tuberculata 分布区约当气候区划上的华北暖温带半湿润区；植被区划上的暖温带落叶阔叶林区和植被区划上的 E11。而华南地构叶 S. cantonensis 及其近缘种云南地构叶 S. yunnanensis 的分布区偏南，约当华中亚热带湿润区，亚热带常绿阔叶林区和植被区系区划上的 E12-15（图 3）。前者属温带性，后者属亚热带性。由此看来，属分布区的研究，除了确定其分布区的总范围外，还必须阐明种在属分布区内的分布规律。这类属的分布区的研究，不仅可以了解制约分布区的外界环境条件及属内各种间的不同性质，而且对于植物区系区分或植被区划研究具有重要意义。

6 结论与讨论

6.1 根据特有属内种的分布格局，我们将 247 个中国种子植物特有属划分为 5 个分布区类型。

6.2 属分布区的大小主要决定于属内各种对不同外界环境条件的适应能力。而属内种数多少，不一定起决定作用。

6.3 属分布区的形状主要取决于地形以及由此引起的生态条件的变化。同时与气候、植被和区系区的分界有着密切的联系。

6.4 属分布区的研究，除了确定属分布区界限外，务必研究属内各个种的分布区及其分布规律，这对次一级植被区划和植被区划具有重要意义。

参考文献

中国科学院自然区划工作委员会．1959．中国气候区划．北京：科学出版社

应俊生．张志松．1984．中国植物区系中的特有现象——特有属的研究．植物分类学报．22(4)：259-268

吴征镒．1979．论中国植物区系的分区问题．云南植物研究．1(1)：1-9
《植物分类学报》学术论文的要求（摘要）

有一些年轻作者问及撰写《植物分类学报》论文的要求，本文概述如下，仅供参考。

1 涉及实验学科方面的论文

学术论文（简称论文）根据研究工作中所获得的素材，经过细心整理，去粗取精，深化提高，形成论点。它要求论点明确、论据可靠、要点突出，推理判断合乎逻辑、文字简练，它必须具有创造性、创新性（前人所没有的）。原始性（是最先的）。

学术论文不等同于学位论文。学位论文是全部研究工作的缩影，它大致包括：对前人工作进行系统的回顾，对上述文献进行综合总结，叙述如何形成自己的研究课题（说明掌握了本领域的研究动态、有开辟新研究领域的能力）；详尽介绍实验的材料、方法、过程和结果；突出自己的新见解并深入探讨某些理论观点等。学位论文字数可为3～5万字不等。学位论文的精华部分及创新部分可整理成学术论文，一般字数在5～6千字，最好不超过一万一字。

在学术论文中，不要作全面的历史回顾，不要介绍一般的常识和教材书上的知识（因读者是同行，是专家），不要滥用科技秘密，不宜发表模仿和重复前人的工作。如果是引用对比前人的工作要注明出处。

学术论文诸方面的大致要求如下：

（A）论文标题 要求简短、确切、鲜明，概括全篇内容。不要大标题小文章，尽量不要大帽子的大标题下加副标题，使文题太长（书面上写不下，也不便于作文摘、索引和题录等，更不便于读者记忆）。此情况下，可副标题作副标题，然后在脚注中说明是×××研究的第×篇即可。

（B）论文的作者署名 论文的作者应是直接参加全部或主要工作、能对论文负责的人。直接参加工作者也可包括指导工作和指导工作的人。那些对工作给予帮助或只参加部分具体工作、对全面工作缺乏了解、不能对论文全面负责的人不应署名，但应放在志谢的内容中。

（C）摘要 要能确切、具体地说明论文的主要内容、结果，要求准确、具体、开门见山、精练，说明论文的目的、为什么从事此项研究工作、方法、具体结果和结论。重点是结果和结论，写出自己研究成果的创新、独特之处，字数300字左右。

（D）关键词 一般从论文题目或论文内容中抽出，以供检索信息。

（E）引言 简要说明从事本研究工作的缘起，前人工作和知识的空白、本项研究的特点和涉及范围、采用方法和预期目的等。可强调指出自己的最新工作。术语、定义及需说明的问题也可写入。要求言简意赅，一目了然。此段文字不要冗长，文字要润色，不要与摘要和结果部分相同，不要作全面的历史回顾；不要系统的文献综述，不要叙述众所周知的意义。

（下转530页）