%A Wei SUN, Zhong-Ze ZHOU, Ming-Zhen LIU, He-Wen WAN, Xiang DONG %T Reappraisal of the generic status of Pteroxygonum (Polygonaceae) on the basis of morphology, anatomy and nrDNA ITS sequence analysi %0 Journal Article %D 2008 %J J Syst Evol %R 10.3724/SP.J.1002.2008.06120 %P 53-59 %V 46 %N 1 %U {https://www.jse.ac.cn/CN/abstract/article_17463.shtml} %8 2008-01-18 %X Gross morphology, fruit anatomy, tepal venation, pollen morphology, chromosome number and ITS sequence of Pteroxygonum Damm. & Diels as well as other related genera (Polygonum, Fallopia, Reynoutria, Fagopyrum, and Antenoron) have been investigated to evaluate the generic status of Pteroxygonum. Pt. giraldii Damm. & Diels has three sharp horns at the base of fruit, which is distinctive among all the genera investigated. Upon observation of fruits under a light microscope (LM), the exocarp of Pt. giraldii is usually thickened and delimited by the rectangular cells with some sporadic undulating lumen, while that of Fagopyrum is thin-walled and isodiametric to rectangular in the cell shape. Analysis of tepal venation was performed under a stereomicroscope, and two types of tepal venation were found in Fagopyrum and Pteroxygonum. The type I is trifid, observed in Pt. giraldii, F. esculentum Moench, F. dibotrys (D. Don) Hara and F. tataricum (L.) Gaertn. The type II, found in F. caudatum (Sam.) A. J. Li, F. urophyllum (Bur. & Franch.) H. Gross and F. gracilipes (Hemsl.) Damm. ex Diels, has the main vein extending from tepal base with some secondary veins. Evidence from tepal venation supports the previous classification in which Fagopyrum can be divided into a large-achene group and a small-achene group. Pollen morphology was investigated under a scanning electron microscope (SEM). The exine ornamentation of Pt. giraldii was finely reticulate with lumina diameter wider than muri width. The exine ornamentation in all the examined Fagopyrum species is, however, prominently sunken punctuate. The phylogenetic analysis of nuclear ribosomal DNA (nrDNA) ITS sequences in Pteroxygonum and related genera indicated that all the species form a well-supported monophyletic group with two clades. One includes Polygonum sect. Avicularia Meisn., genus Fallopia and genus Reynoutria, and the other consists of other sections of Polygonum, genus Fagopyrum and Pteroxygonum. The latter clade can be divided into two subclades. Fagopyrum species compose the first one, while Pteroxygonum giraldii, species of Polygonum (except sect. Avicularia) and Antenoron form the second one. In consideration of the above evidence, we conclude that Pteroxygonum is an independent genus in tribe Persicarieae, and should not be merged into the genus Fagopyrum.