2018年, 第56卷, 第4期 刊出日期:2018-07-10
  

  • 全选
    |
  • Li-Min Lu, Stefanie Ickert-Bond, Jun Wen
    Journal of Systematics and Evolution. 2018, 56(4): 259-261. https://doi.org/10.1111/jse.12449
  • Zhao-Fu Chu, Jun Wen, Yong-Ping Yang, Ze-Long Nie, Ying Meng
    Journal of Systematics and Evolution. 2018, 56(4): 273-282. https://doi.org/10.1111/jse.12310


  • Journal of Systematics and Evolution. 2018, 56(4): 283-296. https://doi.org/10.1111/jse.12300
  • Jun Wen, AJ Harris, Yash Kalburgi, Ning Zhang, Yuan Xu, Wei Zheng, Stefanie M. Ickert-Bond, Gabriel Johnson, Elizabeth A. Zimmer
    Journal of Systematics and Evolution. 2018, 56(4): 297-308. https://doi.org/10.1111/jse.12447

    Vitis L. (the grape genus) is the economically most important fruit crop, as the source of grapes and wine. Phylogenetic relationships within the genus have been highly controversial. Herein, we employ sequence data from whole plastomes to attempt to enhance Vitis phylogenetic resolution. The results support the New World Vitis subgenus Vitis as monophyletic. Within the clade, V. californica is sister to the remaining New World Vitis subgenus Vitis. Furthermore, within subgenus Vitis, a Eurasian clade is robustly supported and is sister to the New World clade. The clade of Vitis vinifera ssp. vinifera and V. vinifera ssp. sylvestris is sister to the core Asian clade of Vitis. Several widespread species in North America are found to be non‐monophyletic in the plastome tree, for example, the broadly defined Vitis cinerea and V. aestivalis each needs to be split into several species. The non‐monophyly of some species may also be due to common occurrences of hybridizations in North American Vitis. The classification of North American Vitis by Munson into nine series is discussed based on the phylogenetic results. Analyses of divergence times and lineage diversification support a rapid radiation of Vitis in North America beginning in the Neogene.

  • Stefanie M. Ickert-Bond, AJ Harris, Sue Lutz, Jun Wen
    Journal of Systematics and Evolution. 2018, 56(4): 309-330. https://doi.org/10.1111/jse.12313

    We investigated leaf anatomy and micromorphology in the New World Vitis using light and scanning electron microscopy to understand the correlation of these traits to molecular phylogenetic relationships and environmental affinity. We observed traits known to differ among species of Vitis with importance in traditional taxonomy of Vitis: trichome type, stomata morphology, mesophyll organization, and midrib vascularization. We found that traits associated with water conductance and photosynthesis comprised the highest loadings of axis one of a principal components analysis (PCA) while traits related to gas exchange (i.e., the stomatal apparatus) had high loadings on axis two. Using the PCA, we identified seven clusters of species, which showed little correlation to recently reported molecular phylogenetic relationships. Moreover, analyses using Bayes Traits and Bayesian Binary Method revealed little to no phylogenetic signal in trait evolution. PCA axes one and two separated species occurring in dry southwestern North American habitats from those in mesic places. For example, a cluster of V. monticola and V. arizonica occurred adjacent to a cluster of V. californica and V. girdiana in ordination space, and the latter three species share key leaf anatomical traits. Nevertheless, among these, only V. arizonica and V. girdiana are closely related according to molecular phylogeny. Thus, the leaf micromorphological/anatomical traits of Vitis observed in this study are highly correlated with environment, but not phylogenetic relationships. We expect that trait similarities among distantly related species may result from evolutionary convergences, especially within xeric habitats of western North America.

  • Zhi-Yao Ma, Jun Wen, Jing-Pu Tian, Abbas Jamal, Long-Qing Chen, Xiu-Qun Liu
    Journal of Systematics and Evolution. 2018, 56(4): 331-339. https://doi.org/10.1111/jse.12444

    Reticulate evolution is an important driving force of angiosperm evolution. It has been proposed as an important evolutionary process in Vitis L. subgenus Vitis. Events of natural hybridization and introgression of several taxa native to North America have been hypothesized and discussed. However, there is no convincing evidence of reticulate evolution reported for closely related Vitis taxa from East Asia. We aim to explore natural hybridization and introgression among four closely related Vitis taxa from East Asia (V. amurensis Ruprecht, V. romanetii Romanet du Caillaud, V. shenxiensis C. L. Li, and V. piasezkii Maximowicz) with the restriction‐site associated DNA sequencing technique. A total of 46 accessions, covering the potential morphological and geographic variation of each species, are sequenced. Our results show a complex evolutionary pattern of the four Vitis species. The phylogenetic inference suggests that V. amurensis is monophyletic, however, V. romanetii, V. shenxiensis, and V. piasezkii do not appear to be monophyletic. Significant signals of introgression in some accessions have been detected by population structure analyses. D‐statistics analysis and population structure analyses support the presence of introgression between V. shenxiensis/V. piasezkii and V. romanetii in sympatric populations, but a strong signal of admixture has not been recognized between distantly located populations. Our results provide strong evidence of reticulate evolution among V. romanetii, V. shenxiensis, and V. piasezkii.

  • David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen
    Journal of Systematics and Evolution. 2018, 56(4): 340-359. https://doi.org/10.1111/jse.12417

    Multiple processes − including dispersal, morphological innovation, and habitat change − are frequently cited as catalysts for increased diversification. We investigate these processes and the causal linkages among them in the genus Cyphostemma (Vitaceae), a clade comprising ∼200 species that is unique in the Vitaceae for its diversity of growth habits. We reconstruct time‐calibrated evolutionary relationships among 64 species in the genus using five nuclear and chloroplast markers and infer the group's morphological and biogeographic history. We test for changes in speciation rate and evaluate the temporal association and sequencing of events with respect to dispersal, habitat change, and morphological evolution using a Monte Carlo simulation approach. In Cyphostemma, neither dispersal nor morphological evolution is associated with shifts in speciation rate, but dispersal is associated with evolutionary shifts in growth form. Evolution of stem succulence, in particular, is associated with adaptation to local, pre‐existing conditions following long‐distance dispersal, not habitat change in situ. We suggest that the pattern of association between dispersal, morphological innovation, and diversification may depend on the particular characters under study. Lineages with evolutionarily labile characters, such as stem succulence, do not necessarily conform to the notion of niche conservatism and instead demonstrate remarkable morphological adaptation to local climate and edaphic conditions following dispersal.

  • Sadaf Habib, Viet-Cuong Dang, Stefanie M. Ickert-Bond, Jun Wen, Zhi-Duan Chen, Li-Min Lu
    Journal of Systematics and Evolution. 2018, 56(4): 360-373. https://doi.org/10.1111/jse.12309

    Tetrastigma (Miq.) Planch. (Vitaceae) is a genus with ca. 100 species showing great morphological diversity. Previous molecular phylogenetic studies suggested that traditional classification systems are not consistent with the molecular phylogeny, and Tetrastigma is undergoing further systematic investigation. We traced the evolutionary trends of 20 morphological characters within a robust phylogenetic framework. Our results revealed that many morphological characters show either multiple transitions or few state changes, however, some characters show distinct variation. The two subgenera in Tetrastigma (subgen. Tetrastigma and subgen. Palmicirrata) based on unbranched/bifurcate versus digitately branched tendrils are not supported because subgen. Tetrastigma is paraphyletic. However, the unbranched versus bifurcate/digitately branched tendril is of taxonomic utility to characterize some of the major clades. Inflorescences in Tetrastigma appear axillary, but are leaf‐opposed on a compressed axillary shoot. We found most of the species in Tetrastigma retained the ancestral compound dichasial inflorescence, except those of clade IV that have derived pseudo‐umbellate inflorescences. Other characters including habit, leaf organization, and berry shape provide additional morphological support for the major clades. Our morphological analysis and recent molecular study suggest each of the five major clades within Tetrastigma be treated as distinct taxonomic sections (five sections in the genus).