J Syst Evol ›› 2012, Vol. 50 ›› Issue (4): 351-361.doi: 10.1111/j.1759-6831.2012.00201.x

• Research Articles • Previous Articles     Next Articles

Response of a desert shrub to past geological and climatic change: A phylogeographic study of Reaumuria soongarica (Tamaricaceae) in western China

1,2,3Zhong-Hu LI§ 1Jian CHEN§ 2Gui-Fang ZHAO 1Yu-Peng GUO 1Yi-Xuan KOU 1Ya-Zheng MA 1Gang WANG 3Xiao-Fei MA*   

  1. 1(State Key Laboratory of Grassland Agro-Ecosystem, School of Life Sciences, Lanzhou University, Lanzhou 730000, China)
    2(Key Laboratory of Resource Biology and Biotechnology in Western China (Ministry of Education), College of Life Sciences, Northwest University, Xi’an 710069, China)
    3(Laboratory of Plant Ecophysiology and Biotechnology, Cold and Arid Regions Environmental and Engineering Research Institute, Chinese Academy of Sciences, Lanzhou 730000, China)
  • Received:2012-03-28 Online:2012-05-08 Published:2012-07-17

Abstract: Past geological and climatic events have promoted intraspecific divergence and range shifts in numerous plant species. This is particularly true for temperate species in climate-sensitive regions. Few previous studies have examined whether such genetic footprints were also shaped in desert plants, which can survive in arid habitats and might be “static” under the past climatic oscillations. We therefore studied the phylogeographical history of Reaumuria soongarica, a shrub species that is widely distributed across the deserts of western China. We sequenced chloroplast DNA (cpDNA) fragments of 27 natural populations across western China. Eight cpDNA haplotypes were identified, which clustered into three clades. The clades were located in the western (clade II) or eastern regions (clades I and III) of western China. Analysis of molecular variance also supported this major partitioning (∼67%) of the cpDNA variation between regions. However, within each region, genetic differentiation was low (29%–37%) and a single dominant haplotype was fixed; this indicated past regional range expansion. The deep divergence and regional range expansions of this species may have corresponded to the most recent uplift of the Qinghai–Tibet Plateau and the development of desert ecosystems during the last glacial age in western China. This is the first study to show that the evolutionary history of plants in desert habitats has been seriously affected by past geological and climatic change.

Key words: cpDNA, desert plant, genetic variation, range expansion, Reaumuria soongarica.

[1] Chuan Chen, Li Zheng, Qing Ma, Wen-Bin Zhou, Yin Lu, Yun-Peng Zhao, and Cheng-Xin Fu. Impacts of domestication on population genetics of a traditional Chinese medicinal herb, Atractylodes macrocephala (Asteraceae) . J Syst Evol, 2019, 57(3): 222-233.
[2] Živa Fišer Pečnikar, Nataša Fujs, Robert Brus, Dalibor Ballian, Elena Buzan. Insights into the plastid diversity of Daphne blagayana Freyer (Thymelaeaceae) . J Syst Evol, 2017, 55(5): 437-445.
[3] Ashley Call, Yan-Xia Sun, Yan Yu, Peter B. Pearman, David T. Thomas, Robert N. Trigiano, Ignazio Carbone, Qiu-Yun (Jenny) Xiang. Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): integrative evidence from phylogeography, population demographic history, and species distribution modeling . J Syst Evol, 2016, 54(2): 136-151.
[4] Hannah Graves, A. Lane Rayburn, Sumin Kim,D. K. Lee. Chloroplast DNA variation within prairie cordgrass (Spartina pectinata Link) populations in the U.S. . J Syst Evol, 2016, 54(2): 104-112.
[5] Weronika B. Żukowska, Witold Wachowiak. Utility of closely related taxa for genetic studies of adaptive variation and speciation: Current state and perspectives in plants with focus on forest tree species . J Syst Evol, 2016, 54(1): 17-28.
[6] Yi-Jun Lu, Chuan Chen, Rui-Hong Wang, Ashley N. Egan, Cheng-Xin Fu. Effects of domestication on genetic diversity in Chimonanthus praecox: Evidence from chloroplast DNA and amplified fragment length polymorphism data . J Syst Evol, 2015, 53(3): 239-251.
[7] Yi-Xuan KOU, Yu-Xia WU, Yu-Jin WANG, Dong-Rui JIA, Zhong-Hu LI. Range expansion, genetic differentiation, and phenotypic adaption of Hippophaë neurocarpa (Elaeagnaceae) on the Qinghai–Tibet Plateau . J Syst Evol, 2014, 52(3): 303-312.
[8] Yi-Ying LIAO, You-Hao GUO, Jin-Ming CHEN, Qing-Feng WANG. Phylogeography of the widespread plant Ailanthus altissima (Simaroubaceae) in China indicated by three chloroplast DNA regions . J Syst Evol, 2014, 52(2): 175-185.
[9] Shuo YU, Miao-Miao SHI, Xiao-Yong CHEN. Species diversity and distribution of Ruppia in China: Potential roles of long-distance dispersal and environmental factors . J Syst Evol, 2014, 52(2): 231-239.
[10] Da-Yong ZHANG. Demographic model of admixture predicts symmetric introgression when a species expands into the range of another: A comment on Currat et al. (2008) . J Syst Evol, 2014, 52(1): 35-39.
[11] Alexander Ju. DUDNIKOV. Geographic patterns of low-polymorphic enzyme-encoding genes allelic variation in Aegilops tauschii . J Syst Evol, 2013, 51(6): 715-721.
[12] Marina M. KOZYRENKO,Svetlana B. GONTCHAROVA,Andrey A. GONTCHAROV. Phylogenetic relationships among Orostachys subsection Orostachys species (Crassulaceae) based on nuclear and chloroplast DNA data . J Syst Evol, 2013, 51(5): 578-589.
[13] Xue-Mei Zhang, Xing-Jin He. Phylogeography of Angelica nitida (Apiaceae) endemic to the Qinghai–Tibet Plateau based on chloroplast DNA sequences . J Syst Evol, 2013, 51(5): 564-577.
[14] Lua LOPEZ, Rodolfo BARREIRO. Patterns of chloroplast DNA polymorphism in the endangered polyploid Centaurea borjae (Asteraceae): implications for preserving genetic diversity. . J Syst Evol, 2013, 51(4): 451-460.
[15] Qian-Quan LI, Min-Hui LI, Qing-Jun YUAN,Zhan-Hu CUI,Lu-Qi HUANG, Pei-Gen XIAO. Phylogenetic relationships of Salvia (Lamiaceae) in China: Evidence from DNA sequence datasets . J Syst Evol, 2013, 51(2): 184-195.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 41 .
[2] Wang Hong Jian Ling-cheng Sun Long-hua. The Roles of the Cold-Resister for Accelerating the Growth and Development, and the Cold-Stability of the Tissue and Cell Structure of Plant Leaves[J]. Chin Bull Bot, 1994, 11(特辑): 163 -167 .
[3] Hong Jian-ming;Yin Li-ping and Qiu Ze-sheng. Progress of Genetic Engineering for Plant Diseases Resistance[J]. Chin Bull Bot, 1997, 14(03): 40 -46 .
[4] Lin liang-qiu;Zhang Qing-qi and Wu Wen-shan. A Study on Pollen Morphology of Rosa laevigata and Its Nutrition Composition[J]. Chin Bull Bot, 1994, 11(04): 43 -44 .
[5] Wen Ye-chun;Jin Bao-qi;Li En-shi and Chen Yu-qun. Identification of the Major Components of Stevia rebaudina[J]. Chin Bull Bot, 1984, 2(23): 55 -56 .
[6] . [J]. Chin Bull Bot, 2004, 21(02): 254 -255 .
[7] Xu Xing-yong Wu Li-lian Hong Shu-rong. Changes of Isoperoxides Patterns in Leaf Explants of Woody Plants During Callus Formation in Vitro[J]. Chin Bull Bot, 1983, 1(02): 24 -27 .
[8] Ding Bing- yang;He Yao-hua;Miao Jing and Huang Tao. The Germinating Experiment of the Seeds of Rhododendromn huadingense[J]. Chin Bull Bot, 1997, 14(01): 53 -54 .
[9] Li Ai-ming and Wu Qi. The Shoot Differentiation and Plant Regeneration of Peanut Cotyledon[J]. Chin Bull Bot, 1988, 5(03): 143 -145 .
[10] Jie Dong;Fenghui Qi;Yaguang Zhan. Establishment of the Suspension Culture System and Optimization of Biosynthesis of Gallic Acid in Acer ginnala[J]. Chin Bull Bot, 2008, 25(06): 734 -740 .