J Syst Evol ›› 2014, Vol. 52 ›› Issue (4): 431-449.doi: 10.1111/jse.12052

• Research Articles • Previous Articles     Next Articles

Phylogeny and biogeography of Asian Schefflera (Araliaceae) based on nuclear and plastid DNA sequences data

1Rong LI 2Jun WEN*   

  1. 1(Key Laboratory of Biodiversity and Biogeography, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China)
    2(Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC, USA)
  • Received:2013-04-17 Online:2013-08-21 Published:2013-10-14

Abstract: The phylogeny of Asian Schefflera was inferred from sequences of the nuclear ribosomal internal transcribed spacer region, and six plastid regions (the ndhF gene, the trnL-trnF region, the rps16 intron, the atpB-rbcL intergenic spacer, the rpl16 intron, and the psbA-trnH intergenic spacer). Phylogenetic analyses of the combined plastid and internal transcribed spacer data with parsimony and Bayesian methods strongly support the monophyly of Asian Schefflera. The genus is supported to be closely related to Heteropanax and Tetrapanax with the small tropical continental Asian genus Heteropanax as its sister. Within Asian Schefflera, four distinct subclades were identified: (i) the widely distributed Asian Heptapleurum group with no styles in the gynoecium; (ii) the main Agalma group with racemose or spicate inflorescence units with a few umbellate taxa; (iii) the Schefflera hypoleuca group; and (iv) the Schefflera heptaphylla group. In a broader phylogenetic framework of Araliaceae, Asian Schefflera is hypothesized to have originated in continental Asia at 57.41 Mya (95% high posterior density interval of 40.33–76.06 Mya) in the early Tertiary and radiated into the now SE Asia, eastern Himalaya, and E Asia at 46.11 Mya (95% high posterior density interval of 33.02–60.69 Mya). Its subsequent diversification in Asia may have been driven largely by the collision of the Indian plate with the Asian plate in the middle Eocene and the collision of the Australian margin with the Eurasian margin in the early Miocene.

Key words: Araliaceae, Asian Schefflera, biogeography, phylogeny.

[1] Marc S. Appelhans, Jun Wen, Marco Duretto, Darren Crayn, Warren L. Wagner. Historical biogeography of Melicope (Rutaceae) and its close relatives with a special emphasis on Pacific dispersals . J Syst Evol, 2018, 56(6): 576-599.
[2] Joseph T. Miler, Garry Jolley-Rogers, Brent D. Mishler, and Andrew H. Thornhill. Phylogenetic diversity is a better measure of biodiversity than taxon counting . J Syst Evol, 2018, 56(6): 663-667.
[3] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[4] Liang Zhao, Daniel Potter, Yuan Xu, Pei-Liang Liu, Gabriel Johnson, Zhao-Yang Chang, Jun Wen. Phylogeny and spatio‐temporal diversification of Prunus subgenus Laurocerasus section Mesopygeum (Rosaceae) in the Malesian region . J Syst Evol, 2018, 56(6): 637-651.
[5] Daniel Spalink, Jocelyn Pender, Marcial Escudero, Andrew L. Hipp, Eric H. Roalson, Julian R. Starr, Marcia J. Waterway, Lynn Bohs, and Kenneth J. Sytsma. The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae) . J Syst Evol, 2018, 56(5): 449-465.
[6] Monte Garroutte, Falk Huettmann, Campbell O. Webb, and Stefanie M. Ickert-Bond. Biogeographic and anthropogenic correlates of Aleutian Islands plant diversity: A machine‐learning approach . J Syst Evol, 2018, 56(5): 476-497.
[7] David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae) . J Syst Evol, 2018, 56(4): 340-359.
[8] Guang-Yan Wang , Yong-Ping Yang. Hypothesizing the origin, migration routes, and distribution patterns of Ophiopogon (Asparagaceae) in East and Southeast Asia . J Syst Evol, 2018, 56(3): 194-201.
[9] Vicki A. Funk. Collections-based science in the 21st Century . J Syst Evol, 2018, 56(3): 175-193.
[10] AJ Harris, Ping-Ting Chen, Xin-Wei Xu, Jian-Qiang Zhang, Xue Yang, Jun Wen. A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family . J Syst Evol, 2017, 55(2): 124-141.
[11] Thaís Elias Almeida, Alexandre Salino. State of the art and perspectives on neotropical fern and lycophyte systematics . J Syst Evol, 2016, 54(6): 679-690.
[12] Jun Wen, Ze-Long Nie, Stefanie M. Ickert-Bond. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene . J Syst Evol, 2016, 54(5): 469-490.
[13] Rong Li, Jun Wen. Phylogeny and diversification of Chinese Araliaceae based on nuclear and plastid DNA sequence data . J Syst Evol, 2016, 54(4): 453-467.
[14] Liming Cai, Hong Ma. Using nuclear genes to reconstruct angiosperm phylogeny at the species level: A casestudy with Brassicaceae species . J Syst Evol, 2016, 54(4): 438-452.
[15] Stefanie M. Ickert-Bond, Susanne S. Renner. The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times . J Syst Evol, 2016, 54(1): 1-16.
Full text



[1] Yaobi Xue, Huafeng Zhang, Xiaohua Yang, Lili Niu, Xiang Zhang, Dong Liu, Jianke Li. Rapid Determination of Total Flavonoids in a Medicinal Plant Epimedium by Near-infrared Reflectance Spectroscopy[J]. Chin Bull Bot, 2013, 48(1): 65 -71 .
[2] Congyue Wang, Yutao Wang, Wanlin Zeng, Shaoshan Li. Alleviation of Cd Toxicity in Arabidopsis thaliana Seedlings by Exogenous Ca2+ or K+[J]. Chin Bull Bot, 2014, 49(3): 262 -272 .
[3] Lin Chun-jian. Polar Auxin Transport[J]. Chin Bull Bot, 1996, 13(04): 1 -5 .
[4] Xiaojun Xi, Jing Cao, Jinfeng Zhang, Dengrong Zhang. Study on Drought Resistance of Abies concolor[J]. Chin Bull Bot, 2008, 25(06): 722 -727 .
[5] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .
[6] Yuanwei Fan;Aizhi Liu;Huafang Wang. Transformation of Populus euphratica[J]. Chin Bull Bot, 2009, 44(06): 728 -734 .
[7] Lulong Sun, Qingwei Geng, Hao Xing, Yuanpeng Du, Heng Zhai. Effects of Buffered Cooling in Root Zone on Frost Injury in Grape Leaf[J]. Chin Bull Bot, 2017, 52(3): 290 -296 .
[8] Pu Jin-long;Ji Xiao-duo;He Zhen-xing;Gui Xiao-ming and Chen Xiao-liang. GC-MS Analysis of Essential Oils from some Species of Amomun[J]. Chin Bull Bot, 1984, 2(04): 23 -25 .
[9] Xiao Han, Kai Guo, Xinxin Li, Xu Liu, Bingrui Wang, Tao Xia, Liangcai Peng, Shengqiu Feng. Expression Profiling and Functional Prediction of Arabidopsis AtCESA Genes[J]. Chin Bull Bot, 2014, 49(5): 539 -547 .
[10] Nan Li;Xianchun Sang;Fangming Zhao;Yinghua Ling;Yunfeng Li;Zhenglin Yang;Guanghua He*. Phenotype Analysis and Gene Mapping of a Narrow-leaf Mutant (nal(t)) in Rice (Oryza sativa)[J]. Chin Bull Bot, 2010, 45(02): 157 -161 .