J Syst Evol ›› 2015, Vol. 53 ›› Issue (4): 308-320.doi: 10.1111/jse.12144

• Research Articles • Previous Articles     Next Articles

Intraspecific differentiation of Pleurospermum hookeri (Apiaceae), and its interspecific relationships with two close relatives in the genus Pleurospermum

Xue Bai, Xiang-Guang Ma, Yun-Dong Gao, Cai Zhao, and Xing-Jin He*   

  1. Key Laboratory of Bio-Resources and Eco-Environment of Ministry of Education, College of Life Sciences, Sichuan University, Chengdu 610064, China
  • Received:2014-09-28 Online:2014-12-28 Published:2015-03-30

Abstract: In order to clarify the interspecific relationships of a lineage in Pleurospermum, P. hookeri C. B. Clarke, P. yunnanense Franch., and P. giraldii Diels, and to understand intraspecific divergence of P. hookeri, a phylogeographic study was carried out based on 198 individuals from 24 populations. Three chloroplast DNA regions, ndhF-rpl32, trnL-trnF, and trnQ-rps16, were sequenced in the present study. The genetic relationship between P. hookeri and P. giraldii is not as close as previously assumed. Pleurospermum hookeri and P. giraldii may originate from an unknown ancestor located in the Qinling region. Pleurospermum yunnanensewas found to be the closest relative of P. hookeri in all the species included in the phylogenetic analysis. The two haplotypes identified from P. yunnanense are shared with P. hookeri, which is potentially a result of both incomplete linkage sorting and introgression. Three large divergences within P. hookeri were identified, located at the northeastern edge, southeastern edge, and platform of the Qinghai–Tibet Plateau (QTP), respectively. Long-term history can explain the deep intraspecific divergence of P. hookeri. The uplift of the QTP played a key role in that divergence, and then were the climatic changes in the Quaternary. In addition, we found one refugium at the northeastern edge of the QTP, one at the southeastern edge, and at least one in the Hengduan Mountains region on the platform of the QTP.

Key words: interspecific relationships, intraspecific differentiation, phylogeography, Pleurospermum, Qinghai–Tibet Plateau

[1] Érica Mangaravite, Thamyres C. da Silveira, Alexander Huamán-Mera, Luiz O. de Oliveira, Alexandra N. Muellner-Riehl, and Jan Schnitzler. Genetic diversity of Cedrela fissilis (Meliaceae) in the Brazilian Atlantic Forest reveals a complex phylogeographic history driven by Quaternary climatic fluctuations . J Syst Evol, 2019, 57(6): 655-669.
[2] Ashley Call, Yan-Xia Sun, Yan Yu, Peter B. Pearman, David T. Thomas, Robert N. Trigiano, Ignazio Carbone, Qiu-Yun (Jenny) Xiang. Genetic structure and post-glacial expansion of Cornus florida L. (Cornaceae): integrative evidence from phylogeography, population demographic history, and species distribution modeling . J Syst Evol, 2016, 54(2): 136-151.
[3] Hong-Hu MENG, Xiao-Yang GAO, Jian-Feng HUANG, Ming-Li ZHANG. Plant phylogeography in arid Northwest China: Retrospectives and perspectives . J Syst Evol, 2015, 53(1): 33-46.
[4] Xi LU, Li CHEN, Ya-Ping CHEN,Hua PENG. Molecular phylogeography and conservation genetics of Sladenia celastrifolia inferred from chloroplast DNA sequence variation . J Syst Evol, 2014, 52(4): 458-465.
[5] Gai-Ni WANG, Xin-Yu HE, Georg MIEHE, Kang-Shan MAO. Phylogeography of the Qinghai–Tibet Plateau endemic alpine herb Pomatosace filicula (Primulaceae) . J Syst Evol, 2014, 52(3): 289-302.
[6] Liang-Liang YUE, Hang SUN. Montane refugia isolation and plateau population expansion: Phylogeography of Sino-Himalayan endemic Spenceria ramalana (Rosaceae) . J Syst Evol, 2014, 52(3): 326-340.
[7] De-Qing HUANG   Qin-Qin LI   Chun-Jing ZHOU   Song-Dong ZHOU   Xing-Jin HE. Intraspecific differentiation of Allium wallichii (Amaryllidaceae) inferred from chloroplast DNA and internal transcribed spacer fragments . J Syst Evol, 2014, 52(3): 341-354.
[8] Yi-Ying LIAO, You-Hao GUO, Jin-Ming CHEN, Qing-Feng WANG. Phylogeography of the widespread plant Ailanthus altissima (Simaroubaceae) in China indicated by three chloroplast DNA regions . J Syst Evol, 2014, 52(2): 175-185.
[9] Chao ZHAO,Xiao-Quan WANG,Fu-Sheng YANG. Mechanisms underlying flower color variation in Asian species of Meconopsis: A preliminary phylogenetic analysis based on chloroplast DNA and anthocyanin biosynthesis genes . J Syst Evol, 2014, 52(2): 125-133.
[10] Xue-Mei Zhang, Xing-Jin He. Phylogeography of Angelica nitida (Apiaceae) endemic to the Qinghai–Tibet Plateau based on chloroplast DNA sequences . J Syst Evol, 2013, 51(5): 564-577.
[11] Cai ZHAO, Xiang-Guang MA, Qian-Long LIANG, Chang-Bao WANG, Xing-Jin HE. Phylogeography of an alpine plant (Bupleurum smithii, Apiaceae) endemic to the Qinghai–Tibetan Plateau and adjacent regions inferred from chloroplast DNA sequence variation . J Syst Evol, 2013, 51(4): 382-395.
[12] Shi-Zhu LI,Li ZHANG,Lin MA,Wei HU,Shan LV,Qin LIU, Ying-Jun QIAN,Qiang WANG,Xiao-Nong ZHOU. Phylogenetic performance of mitochondrial protein-coding genes of Oncomelania hupensis in resolving relationships between landscape populations . J Syst Evol, 2013, 51(3): 353-364.
[13] Giovanni ZECCA, Fabrizio GRASSI. RPB2 gene reveals a phylodemographic signal in wild and domesticated grapevine (Vitis vinifera) . J Syst Evol, 2013, 51(2): 205-211.
[14] Ormon SULTANGAZIEV, Heino KONRAD, Silvio SCHUELER, Thomas GEBUREK. North-south population subdivision of Juniperus seravschanica in Kyrgyzstan revealed through novel plastid DNA markers . J Syst Evol, 2012, 50(5): 411-421.
[15] Xiao-Hong LI, Jian-Wen SHAO,Chang LU, Xiao-Ping ZHANG, Ying-Xiong QIU. Chloroplast phylogeography of a temperate tree Pteroceltis tatarinowii (Ulmaceae) in China . J Syst Evol, 2012, 50(4): 325-333.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Baoda Han;Lixin Li. Seed Storage Proteins and Their Intracellular Transport and Processing[J]. Chin Bull Bot, 2010, 45(04): 492 -505 .
[2] Zhao Hui-Xiang. Induction of Plantlets from Endosperm of “JINFENG” Pear in Vitro[J]. Chin Bull Bot, 1983, 1(02): 38 -39 .
[3] Cai Ji-jiong. Tissue Conductance Technique of Plant Specimens[J]. Chin Bull Bot, 1988, 5(02): 117 -118 .
[4] Zhou Guo-xia. Effects of the Cold-resister CR-4 for Defending the Seedling Blight in Early Spring Rice Seedling Culture[J]. Chin Bull Bot, 1994, 11(特辑): 121 -122 .
[5] Chen Da-you. An Experience on Photographing Plant-fossil[J]. Chin Bull Bot, 1988, 5(02): 125 -127 .
[6] Xiaojun Xi, Jing Cao, Jinfeng Zhang, Dengrong Zhang. Study on Drought Resistance of Abies concolor[J]. Chin Bull Bot, 2008, 25(06): 722 -727 .
[7] Jing Wang Ting Wang. Molecular Structure, Physiological Function and Evolution of Phytochrome in Higher Plants[J]. Chin Bull Bot, 2007, 24(05): 649 -658 .
[8] Hongfei Zhang Suomin Wang. Advances in Study of Na+ Uptake and Transport in Higher Plants and Na+ Homeostasis in the Cell[J]. Chin Bull Bot, 2007, 24(05): 561 -571 .
[9] Lin Chun-jian. Polar Auxin Transport[J]. Chin Bull Bot, 1996, 13(04): 1 -5 .
[10] LIANG Yu GAO Yu-Bao. Effects of Endophyte Infection on Growth,Development and Stress Resistance of Plants[J]. Chin Bull Bot, 2000, 17(01): 52 -59 .