J Syst Evol ›› 2017, Vol. 55 ›› Issue (2): 124-141.doi: 10.1111/jse.12236

• Research Articles • Previous Articles     Next Articles

A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family

AJ Harris1, Ping-Ting Chen2, Xin-Wei Xu3, Jian-Qiang Zhang4, Xue Yang5, and Jun Wen1*   

  1. 1Department of Botany, National Museum of Natural History, MRC-166, Smithsonian Institution, Washington, DC 20013-7012, USA
    2Institute of Agricultural Economy and Information, Hubei Academy of Agricultural Sciences, Wuhan 430064, China
    3National Field Station of Freshwater Ecosystem of Liangzi Lake, College of Life Sciences, Wuhan University, Wuhan 430072, China
    4College of Life Sciences, Shaanxi Normal University, Xi'an 710119, China
    5Agriculture School, Kunming University, Kunming 650214, China
  • Received:2016-06-16 Online:2016-12-11 Published:2017-03-08

Abstract: Staphyleaceae traditionally comprises three genera of temperate and tropical trees and shrubs: Euscaphis Siebold & Zucc., Staphylea L., and Tuprinia Vent. These genera are clearly supported by morphology, but a recent classification based on four chloroplast genes and nuclear ITS treats Staphylea, Euscaphis, and New WorldTurpinia in Staphylea s.l. and Old World Turpinia in Dalrympelea Roxb. In this study, our objectives were to (1) resolve the phylogenetic relationships within Staphyleaceae using two nuclear and six chloroplast markers, (2) explore morphological synapomorphies that support major clades, and (3) discuss the implications of our results on generic delimitation and biogeography. Our phylogenetic results show five major clades in Staphyleaceae: (1) Old World Turpinia, (2) New World Turpinia, (3) a clade of exclusively Old World Staphylea, (4) an Asian-North American clade of Staphylea comprising all New World species and the rest of the Old World ones, and (5) Euscaphis. Within the two clades each of Staphylea and Turpinia, morphological features traditionally used for delimiting the genera may exhibit convergence. Among morphological features examined in this study, we found that pollen is not taxonomically informative, features of leaf teeth and epicuticular waxes show limited support for the traditional genera of Staphylea and Tuprinia, respectively, and petal length (i.e., flower size) is significantly smaller in Old World Turpinia compared to New World Turpinia. With respect to biogeography, our results support a rare disjunction between eastern North America and the Himalayas.

Key words: Amphi-Pacific disjunction, Asian-North American disjunction, biogeography, Dalrympelea, generic delimitation, Euscaphis, Staphylea, Turpinia

[1] Marc S. Appelhans, Jun Wen, Marco Duretto, Darren Crayn, Warren L. Wagner. Historical biogeography of Melicope (Rutaceae) and its close relatives with a special emphasis on Pacific dispersals . J Syst Evol, 2018, 56(6): 576-599.
[2] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[3] Liang Zhao, Daniel Potter, Yuan Xu, Pei-Liang Liu, Gabriel Johnson, Zhao-Yang Chang, Jun Wen. Phylogeny and spatio‐temporal diversification of Prunus subgenus Laurocerasus section Mesopygeum (Rosaceae) in the Malesian region . J Syst Evol, 2018, 56(6): 637-651.
[4] Daniel Spalink, Jocelyn Pender, Marcial Escudero, Andrew L. Hipp, Eric H. Roalson, Julian R. Starr, Marcia J. Waterway, Lynn Bohs, and Kenneth J. Sytsma. The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae) . J Syst Evol, 2018, 56(5): 449-465.
[5] Monte Garroutte, Falk Huettmann, Campbell O. Webb, and Stefanie M. Ickert-Bond. Biogeographic and anthropogenic correlates of Aleutian Islands plant diversity: A machine‐learning approach . J Syst Evol, 2018, 56(5): 476-497.
[6] David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae) . J Syst Evol, 2018, 56(4): 340-359.
[7] Guang-Yan Wang , Yong-Ping Yang. Hypothesizing the origin, migration routes, and distribution patterns of Ophiopogon (Asparagaceae) in East and Southeast Asia . J Syst Evol, 2018, 56(3): 194-201.
[8] Vicki A. Funk. Collections-based science in the 21st Century . J Syst Evol, 2018, 56(3): 175-193.
[9] Thaís Elias Almeida,Alexandre Salino. State of the art and perspectives on neotropical fern and lycophyte systematics . J Syst Evol, 2016, 54(6): 679-690.
[10] Jun Wen, Ze-Long Nie, Stefanie M. Ickert-Bond. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene . J Syst Evol, 2016, 54(5): 469-490.
[11] Stefanie M. Ickert-Bond, Susanne S. Renner. The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times . J Syst Evol, 2016, 54(1): 1-16.
[12] Sheng-Bin Chen, J. W. Ferry Slik, Jie Gao, Ling-Feng Mao, Meng-Jie Bi, Meng-Wei Shen, Ke-Xin Zhou. Latitudinal diversity gradients in bryophytes and woody plants: Roles of temperature and water availability . J Syst Evol, 2015, 53(6): 535-545.
[13] Hong-Hu Meng, Tao Su, Yong-Jiang Huang, Hai Zhu, Zhe-Kun Zhou. Late Miocene Palaeocarya (Engelhardieae: Juglandaceae) from Southwest China and its biogeographic implications . J Syst Evol, 2015, 53(6): 499-511.
[14] Jian-Ying XIANG, Jun WEN, Hua PENG. Evolution of the eastern Asian–North American biogeographic disjunctions in ferns and lycophytes . J Syst Evol, 2015, 53(1): 2-32.
[15] Wei WANG, Hong-Lei LI, Xiao-Guo XIANG, Zhi-Duan CHEN. Revisiting the phylogeny of Ranunculeae: Implications for divergence time estimation and historical biogeography . J Syst Evol, 2014, 52(5): 551-565.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Hung Min-Quan. Two Oily Plants Containing a-eleostearic Acid[J]. Chin Bull Bot, 1983, 1(02): 34 -35 .
[2] Fan Rong-li. Rapid Method for Determination of Feuorine in Plants[J]. Chin Bull Bot, 1985, 3(01): 50 -52 .
[3] Cuiping Yuan;Ruzhen Chang;Lijuan Qiu. Progress on Genetic Mapping and Gene Cloning of Cyst Nematode Resistance in Soybean[J]. Chin Bull Bot, 2006, 23(1): 14 -22 .
[4] Lin Shi-qing;Xu Chun-hui;Zhang Qi-de;Xu Li;Mao Da-zhang and Kuang Ting-yun. Some Application of Chlorophyll Fluorescence Kineties to Plant Stress Physiology, Phytoecology and Agricultural Modernization[J]. Chin Bull Bot, 1992, 9(01): 1 -16 .
[5] Weidong Pan;Xiaofeng Li;Shuangyan Chen;Gongshe Liu. Progress in Vitamin E Synthesis-related Enzyme Genes and in vivo Functions in Plants[J]. Chin Bull Bot, 2006, 23(1): 68 -77 .
[6] Jian Ling-cheng. Plants Cytoskeleton[J]. Chin Bull Bot, 1991, 8(03): 1 -13 .
[7] . [J]. Chin Bull Bot, 1994, 11(专辑): 7 .
[8] Huang Zhao-xiang;Zheng Zhen-gui and Zhu Du. Ecological Effect of Taxodium ascendens Oryza sativa Ecosystem (II) Ecological-enuironment Effects ofthe Ecosystem[J]. Chin Bull Bot, 1996, 13(03): 40 -43 .
[9] XU Guo-Hua ZHANG Shao-Ling LIU You-Liang. The Pistil Extracellular Matrix and Its Functions in the Pollen Tube Growth[J]. Chin Bull Bot, 2003, 20(02): 218 -226 .
[10] Jiang De-xin and Yang Hui-qiu. [J]. Chin Bull Bot, 1983, 1(01): 32 .