J Syst Evol ›› 2017, Vol. 55 ›› Issue (6): 525-541.doi: 10.1111/jse.12251

• Reviews • Previous Articles     Next Articles

Grass flowers: An untapped resource for floral evo-devo

Amanda Schrager-Lavelle1, Harry Klein1, Amanda Fisher2, and Madelaine Bartlett1*   

  1. 1Biology Department, University of Massachusetts, Amherst, MA 01003, USA
    2Biological Sciences Department, California State University, Long Beach, CA 90840, USA
  • Received:2017-02-14 Online:2017-03-27 Published:2017-11-16

Abstract: The abrupt origin and rapid diversification of the flowering plants presents what Darwin called “an abominable mystery”. Floral diversification was a key factor in the rise of the flowering plants, but the molecular underpinnings of floral diversity remain mysterious. To understand the molecular biology underlying floral morphological evolution, genetic model systems are essential for rigorously testing gene function and gene interactions. Most model plants are eudicots, while in the monocots genetic models are almost entirely restricted to the grass family. Likely because grass flowers are diminutive and specialized for wind pollination, grasses have not been a major focus in floral evo-devo research. However, while grass flowers do not exhibit any of the raucous morphological diversification characteristic of the orchids, there is abundant floral variation in the family. Here, we discuss grass flower diversity, and review what is known about the developmental genetics of this diversity. In particular, we focus on three aspects of grass flower evolution: (1) the evolution of a novel organ identity—the lodicule; (2) lemma awns and their diversity; and (3) the convergent evolution of sexual differentiation. The combination of morphological diversity in the grass family at large and genetic models spread across the family provides a powerful framework for attaining deep understanding of the molecular genetics of floral evolution.

Key words: awns, evolution of plant development, evolutionary developmental biology, floral sexuality, flower development, flower evolution

[1] Yang LIU, Chun-Ce GUO, Gui-Xia XU, Hong-Yan SHAN, Hong-Zhi KONG. Evolutionary pattern of the regulatory network for flower development: Insights gained from a comparison of two Arabidopsis species . J Syst Evol, 2011, 49(6): 528-538.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 19 .
[2] Xiao Xiao and Cheng Zhen-qi. Chloroplast 4.5 S ribosomol DNA. II Gene and Origin[J]. Chin Bull Bot, 1985, 3(06): 7 -9 .
[3] CAO Cui-LingLI Sheng-Xiu. Effect of Nitrogen Level on the Photosynthetic Rate, NR Activity and the Contents of Nucleic Acid of Wheat Leaf in the Stage of Reproduction[J]. Chin Bull Bot, 2003, 20(03): 319 -324 .
[4] Shi Jian ming;Gui Yao-lin and Zhu Zhi-qing. Observation on Amitosis of Sugarbeet (Beta vulgaris) Petiole during Dedifferentiation in Vitro[J]. Chin Bull Bot, 1989, 6(03): 155 .
[5] . [J]. Chin Bull Bot, 1994, 11(专辑): 76 .
[6] LI Jun-De YANG Jian WANG Yu-Fei. Aquatic Plants in the Miocene Shanwang Flora[J]. Chin Bull Bot, 2000, 17(专辑): 261 .
[7] HUANG Ben-Hong. Late Paleozoic Flora in Nei Mongol Plateau[J]. Chin Bull Bot, 2000, 17(专辑): 172 -178 .
[8] XU Jing-Xian WANG Yu-Fei YANG Jian PU Guang-Rong ZHANG Cui-Fen. Advances in the Research of Tertiary Flora and Climate in Yunnan[J]. Chin Bull Bot, 2000, 17(专辑): 84 -94 .
[9] Sun Zhen-xiao Xia Guang-min Chen Hui-min. Karyotype Analysis of Psathyrostachys juncea[J]. Chin Bull Bot, 1995, 12(01): 56 .
[10] Yunpu Zheng;Jiancheng Zhao * ;Bingchang Zhang;Lin Li;Yuanming Zhang . Advances on Ecological Studies of Algae and Mosses in Biological Soil Crust[J]. Chin Bull Bot, 2009, 44(03): 371 -378 .