J Syst Evol ›› 2017, Vol. 55 ›› Issue (5): 466-476.doi: 10.1111/jse.12264

• Research Articles • Previous Articles     Next Articles

Chromosome number variation and polyploidy in 19 Kaempferia (Zingiberaceae) taxa from Thailand and one species from Laos

Nattapon Nopporncharoenkul1, Jatuporn Chanmai1, Thaya Jenjittikul1, Kesara Anamthawat-Jónsson2, and Puangpaka Soontornchainaksaeng1*   

  1. 1Department of Plant Science, Faculty of Science, Mahidol University, Bangkok 10400, Thailand
    2Institute of Life and Environmental Sciences, School of Engineering and Natural Sciences, University of Iceland, Reykjavík IS-101, Iceland
  • Received:2017-03-02 Online:2017-05-25 Published:2017-09-20

Abstract: Several Kaempferia species, endemic to Thailand, are rare and therefore entitled to conservation status; other species are widely cultivated. We conducted extensive cytogenetic investigation of this genus to elucidate the botanical and taxonomic characterization of these plants. The study included 42 accessions belonging to 15Kaempferia species and four undescribed taxa from regions throughout Thailand, and one species from Laos. We determined chromosome numbers from root-tip cells collected from germinating rhizomes ex situ, but examined meiosis in flowers collected from the wild. The mitotic analyses verify that 2n chromosome numbers range from 22 (diploid, 15 taxa), 33 (triploid, three species), 44 (tetraploid, five taxa) to 55 (pentaploid, one species). Four taxa included accessions with different ploidy levels. The meiotic analyses demonstrated that all 14 diploid accessions investigated displayed normal meiosis, forming 11 bivalents, indicating the base chromosome number x = 11 for this genus. Meiotic figures were obtained from one triploid and four tetraploid accessions. The triploid showed 11 trivalents, most likely indicating autotriploidy. Two tetraploid accessions showed regular meiotic figures consisting of 22 bivalents, probably indicating allopolyploidy originating from interspecific hybrids, a hypothesis that is consistent with observations of plant morphology. The other two tetraploid accessions belong to the same species and show mostly irregular meiotic figures. Cytogenetic information is useful for evaluating fertility and hybridity in the genus. Good seed set was observed among diploid and tetraploid accessions. Triploid and pentaploid plants, on the other hand, do not set seeds, but produce large clusters of vegetatively-propagated rhizomes.

Key words: allopolyploidy, autopolyploidy, chromosome number, Kaempferia, meiotic figure, Zingiberaceae

[1] Joon Seon Lee, Seon‐Hee Kim, Sangryong Lee, Masayuki Maki, Koichi Otsuka, Andrey E. Kozhevnikov, Zoya V. Kozhevnikova, Jun Wen, and Seung‐Chul Kim. New insights into the phylogeny and biogeography of subfamily Orontioideae (Araceae) . J Syst Evol, 2019, 57(6): 616-632.
[2] Gisela M. Via do Pico, Yanina J. Pérez, María B. Angulo, and Massimiliano Dematteis. Cytotaxonomy and geographic distribution of cytotypes of species of the South American genus Chrysolaena (Vernonieae, Asteraceae) . J Syst Evol, 2019, 57(5): 451-467.
[3] Hong‐Mei Liu, Libor Ekrt, Petr Koutecky, Jaume Pellicer, Oriane Hidalgo, Jeannine Marquardt, Fatima Pustahija, Atsushi Ebihara, Sonja Siljak‐Yakovlev, Mary Gibby, Ilia Leitch, and Harald Schneider. Polyploidy does not control all: Lineage‐specific average chromosome length constrains genome size evolution in ferns . J Syst Evol, 2019, 57(4): 418-430.
[4] Daniel Spalink, Jocelyn Pender, Marcial Escudero, Andrew L. Hipp, Eric H. Roalson, Julian R. Starr, Marcia J. Waterway, Lynn Bohs, and Kenneth J. Sytsma. The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae) . J Syst Evol, 2018, 56(5): 449-465.
[5] Farzaneh Habibi, Petr Vít, Mohammadreza Rahiminejad, Bohumil Mandák. Towards a better understanding of the Chenopodium album aggregate (Amaranthaceae) in the Middle East: A karyological, cytometric and morphometric investigation . J Syst Evol, 2018, 56(3): 231-242.
[6] Jonathan P. Spoelhof, Pamela S. Soltis, Douglas E. Soltis. Pure polyploidy: Closing the gaps in autopolyploid research . J Syst Evol, 2017, 55(4): 340-352.
[7] Sue Sherman-Broyles, Aureliano Bombarely, Jeff Doyle. Characterizing the allopolyploid species among the wild relatives of soybean: Utility of reduced representation genotyping methodologies . J Syst Evol, 2017, 55(4): 365-376.
[8] Harald Schneider, Hong-Mei Liu, Yan-Fen Chang, Daniel Ohlsen, Leon R. Perrie, Lara Shepherd, Michael Kessler, Dirk Karger, Sabine Hennequin, Jeannine Marquardt, Stephen Russell, Stephen Ansell, Ngan Thi Lu, Peris Kamau, Josmaily Lóriga Pineiro, Ledis Regalado, Jochen Heinrichs, Atsushi Ebihara, Alan R. Smith, Mary Gibby. Neo- and Paleopolyploidy contribute to the species diversity of Asplenium—the most species-rich genus of ferns . J Syst Evol, 2017, 55(4): 353-364.
[9] Erin M. Sigel. Genetic and genomic aspects of hybridization in ferns . J Syst Evol, 2016, 54(6): 638-655.
[10] Stefanie M. Ickert-Bond, Susanne S. Renner. The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times . J Syst Evol, 2016, 54(1): 1-16.
[11] Gemma MAS DE XAXARS, Alfredo GARCíA-FERNÁNDEZ, Pere BARNOLA, Joan MARTíN, Arnau MERCADÉ, Joan VALLÉS, Pablo VARGAS, Josep VIGO, Teresa GARNATJE. Phylogenetic and cytogenetic studies reveal hybrid speciation in Saxifraga subsect. Triplinervium (Saxifragaceae) . J Syst Evol, 2015, 53(1): 53-62.
[12] Qiang WANG, Xin-Tang MA, De-Yuan HONG. Phylogenetic analyses reveal three new genera of the Campanulaceae . J Syst Evol, 2014, 52(5): 541-550.
[13] Feng-Juan MOU, Dian-Xiang ZHANG. Chromosome studies in the tribe Clauseneae and the cytological homogeneity in the orange subfamily (Aurantioideae, Rutaceae) . J Syst Evol, 2012, 50(5): 460-466.
[14] Syed Mudassir JEELANI, Santosh KUMARI, Raghbir Chand GUPTA. Meiotic studies in some selected angiosperms from the Kashmir Himalayas . J Syst Evol, 2012, 50(3): 244-257.
[15] Ching-Long YEH, Shih-Wen CHUNG, Yu-Wen KUO, Tian-Chuan HSU, Chong-Sheng LEOU, Shin-Jie HONG, Chuan-Rong YEH. A new species of Zingiber (Zingiberaceae) from Taiwan, China, based on morphological and molecular data . J Syst Evol, 2012, 50(2): 163-169.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] LIU Jun;ZHAO Lan-Yong;FENG Zhen;ZHANG Mei-Rong;WU Yin-Feng. Optimization Selection of Genetic Transformation Regeneration System from Leaves of Dendranthema morifolium[J]. Chin Bull Bot, 2004, 21(05): 556 -558 .
[2] Luo Jian-ping and Ja Jing-fen. Structure and Function of Plant Oligosaceaharins[J]. Chin Bull Bot, 1996, 13(04): 28 -33 .
[3] YANG Qi-He SONG Song-Quan YE Wan-HuiYIN Shou-HuaT. Mechanism of Seed Photosensitivity and FactorsInfluencing Seed Photosensitivity[J]. Chin Bull Bot, 2003, 20(02): 238 -247 .
[4] CUI Yue-Hua;WANG Mao and SUN Ke-Lian. Morphological Study of Gutta-containing Cells in Eucommia ulmoides Oliv.[J]. Chin Bull Bot, 1999, 16(04): 439 -443 .
[5] CHEN Shao-Liang LI Jin-Ke BI Wang-Fu WANG Sha-Sheng. Genotypic Variation in Accumulation of Salt Ions, Betaine and Sugars in Poplar Under Conditions of Salt Stress[J]. Chin Bull Bot, 2001, 18(05): 587 -596 .
[6] . Advances in Research into Low-Phytic-Acid Mutants in Crops[J]. Chin Bull Bot, 2005, 22(04): 463 -470 .
[7] Cong Ma, Weiwen Kong. Research Progress in Plant Metacaspase[J]. Chin Bull Bot, 2012, 47(5): 543 -549 .
[8] Weimin Li, Sifeng Li, Bin Li. Genetic Diversity in Natural Populations of Abies chensiensis Based on Nuclear Simple Sequence Repeat Markers[J]. Chin Bull Bot, 2012, 47(4): 413 -421 .
[9] Chang’en Tian, Yuping Zhou. Research Progress in Plant IQ Motif-containing Calmodulin-binding Proteins[J]. Chin Bull Bot, 2013, 48(4): 447 -460 .
[10] Huawei Xu, Dianyun Hou. Research Advances in Protein Transport into Chloroplasts in Plant Cell#br#[J]. Chin Bull Bot, 2018, 53(2): 264 -275 .