J Syst Evol ›› 2017, Vol. 55 ›› Issue (6): 566-580.doi: 10.1111/jse.12272

• Research Articles • Previous Articles     Next Articles

Down regulation of APETALA3 homolog resulted in defect of floral structure critical to explosive pollen release in Cornus canadensis

Xiang Liu1, Lu Li1,2, and Qiu-Yun (Jenny) Xiang*   

  1. 1Department of Plant and Microbial Biology, North Carolina State University, Raleigh, NC 27695-7612, USA
    2Yunnan Academy of Biodiversity, Southwest Forestry University, Kunming 650224, China
  • Received:2017-03-16 Online:2017-06-21 Published:2017-11-16

Abstract: In mature buds of the dwarf dogwood lineage (DW) of Cornus, petals and filaments form an “x”-like box containing mechanical energy from the filaments to allow explosive pollen dispersal. As a start to understand the molecular mechanisms responsible for the origin of this unique structure in Cornus, we cloned and characterized the sequences of APETALA3 (AP3) homologs from Cornus canadensis of the DW lineage and five other Cornus species, given the function of AP3 on petal and stamen development in Arabidopsis, and tested the function of CorcanAP3 using a stable Agrobacterium-mediated transformation system. The cloned CorAP3s (AP3-like genes in Cornus) were confirmed to belong to the euAP3 lineage. qRT-PCR analysis indicated strong increase of CorcanAP3 expression in floral buds of wildtype C. canadensis. A hairpin construct of CorcanAP3 was successfully introduced into wild type plants of C. canadensis, resulting in significant reduction of CorcanAP3 expression and abnormal floral development. The abnormal floral buds lost the “x” form and opened immaturely due to delay or retard of petal and stamen elongation and the push of style elongation. The results suggested CorcanAP3 may function to regulate the coordinated rate of development of petals and stamens in C. canadensis, necessary for the x-structure formation, although the exact molecular mechanism remains unclear. Comparison among six Cornus species indicated a greater ratio of stamen to petal and style growth in C. canadensis, suggesting an evolutionary change of CorAP3 expression pattern in the DW lineage, leading to the greater growth of filaments to form the “x”-box.

Key words: abnormality in floral development, Cornus canadensis, explosive pollen release, functional validation of APETALA3 homolog, gene expression, genetic transformation

[1] Erin M. Sigel. Genetic and genomic aspects of hybridization in ferns . J Syst Evol, 2016, 54(6): 638-655.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Baoda Han;Lixin Li. Seed Storage Proteins and Their Intracellular Transport and Processing[J]. Chin Bull Bot, 2010, 45(04): 492 -505 .
[2] Zhao Hui-Xiang. Induction of Plantlets from Endosperm of “JINFENG” Pear in Vitro[J]. Chin Bull Bot, 1983, 1(02): 38 -39 .
[3] Zhou Guo-xia. Effects of the Cold-resister CR-4 for Defending the Seedling Blight in Early Spring Rice Seedling Culture[J]. Chin Bull Bot, 1994, 11(特辑): 121 -122 .
[4] Xiaojun Xi, Jing Cao, Jinfeng Zhang, Dengrong Zhang. Study on Drought Resistance of Abies concolor[J]. Chin Bull Bot, 2008, 25(06): 722 -727 .
[5] Jing Wang Ting Wang. Molecular Structure, Physiological Function and Evolution of Phytochrome in Higher Plants[J]. Chin Bull Bot, 2007, 24(05): 649 -658 .
[6] Hongfei Zhang Suomin Wang. Advances in Study of Na+ Uptake and Transport in Higher Plants and Na+ Homeostasis in the Cell[J]. Chin Bull Bot, 2007, 24(05): 561 -571 .
[7] Lin Chun-jian. Polar Auxin Transport[J]. Chin Bull Bot, 1996, 13(04): 1 -5 .
[8] LIANG Yu GAO Yu-Bao. Effects of Endophyte Infection on Growth,Development and Stress Resistance of Plants[J]. Chin Bull Bot, 2000, 17(01): 52 -59 .
[9] Hu yu-fan and zhu Jia-nan. New Information on the Coal Series of Gigantopterid[J]. Chin Bull Bot, 1990, 7(04): 49 -50 .
[10] ZHANG Wei-Yun CHEN Hao WANG Shui-Juan TAN Ren-Xiang FEI Xiu-Geng. The Isolation, Purification and Identification of a Kind ofAgar Polysaccharide from Porphyra yezoensis[J]. Chin Bull Bot, 2000, 17(05): 429 -434 .