J Syst Evol ›› 2018, Vol. 56 ›› Issue (6): 576-599.doi: 10.1111/jse.12299

• Research Article • Previous Articles     Next Articles

Historical biogeography of Melicope (Rutaceae) and its close relatives with a special emphasis on Pacific dispersals

Marc S. Appelhans1,2*, Jun Wen2, Marco Duretto3, Darren Crayn4, and Warren L. Wagner2   

  1. 1Department of Systematics, Biodiversity and Evolution of Plants, Albrecht-von-Haller Institute of Plant Sciences, University of Goettingen, Untere Karspuele 2, 37073 Goettingen, Germany
    2Department of Botany, National Museum of Natural History, Smithsonian Institution, PO Box 37012, Washington, DC 20013-7012, USA
    3National Herbarium of New South Wales, Royal Botanic Gardens & Domain Trust, Mrs Macquaries Rd, Sydney NSW 2000, Australia
    4Australian Tropical Herbarium, James Cook University, PO Box 6811, Cairns QLD 4870, Australia
  • Received:2017-10-17 Accepted:2017-12-22 Online:2018-12-13 Published:2018-12-13

Abstract: The genus Melicope (Rutaceae) occurs on most Pacific archipelagos and is perfectly suited to study Pacific biogeography. The main goal was to infer the age, geographic origin and colonization patterns of Melicope and its relatives. We sequenced three nuclear and two plastid markers for 332 specimens that represent 164 species in 16 genera of Rutaceae. Phylogenetic reconstruction, molecular dating, ancestral area reconstruction and diversification analyses were carried out. The two main clades (Acronychia‐Melicope and Euodia) originated in Australasia and their crown ages are dated to the Miocene. Diversification rates differed among the subclades and were lowest in the Euodia lineage and highest in the Hawaiian Melicope lineage. The Malagasy and Mascarene species form a clade, which split from its SE Asian relatives in the Pliocene/Pleistocene. At least eight colonizations to the Pacific islands occurred. The timing of all colonizations except for the Hawaiian group is congruent with age of the island ages. Australia, New Guinea and New Caledonia have been the source of colonizations into the Pacific islands in the Melicope clade. Melicope shows high dispersability and has colonized remote archipelagos such as the Austral and Marquesas Islands each twice. Colonization of islands of the Hawaiian‐Emperor seamount chain likely predates the ages of the current main islands, and the initial colonization to Kaua'i occurred after the splitting of the Hawaiian lineage into two subclades. Wider ecological niches and adaptations to bird‐dispersal likely account for the much higher species richness in the Acronychia‐Melicope clade compared to the Euodia clade.

Key words: Acronychia, dispersal, Euodia, Melicope, Pacific biogeography, Rutaceae

[1] Santiago Martín‐Bravo, Pedro Jiménez‐Mejías, Tamara Villaverde, Marcial Escudero, Marlene Hahn, Daniel Spalink, Eric H. Roalson, Andrew L. Hipp, and the Global Carex Group (Carmen Benítez-Benítez, Leo P. Bruederle, Elisabeth Fitzek, Bruce A. Ford, Kerry A. Ford, Mira Garner, Sebastian Gebauer, Matthias H. Hoffmann, Xiao-Feng Jin, Isabel Larridon, Étienne Léveillé-Bourret, Yi-Fei Lu, Modesto Luceño, Enrique Maguilla, Jose Ignacio Márquez‐Corro, Mónica Míguez, Robert Naczi, Anton A. Reznicek, and Julian R. Starr). A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification . J Syst Evol, 2019, 57(6): 695-718.
[2] Claudia Paetzold, Michael Kiehn, Kenneth R. Wood, Warren L. Wagner, and Marc S. Appelhans. The odd one out or a hidden generalist: Hawaiian Melicope (Rutaceae) do not share traits associated with successful island colonization . J Syst Evol, 2018, 56(6): 621-636.
[3] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[4] Anne L.J. Rutgrink, Michaël Visser, Peter C. van Welzen. Differences between the floras of the North and South Moluccas (Indonesia) . J Syst Evol, 2018, 56(6): 652-662.
[5] AJ Harris, Stefanie Ickert-Bond, and Aarón Rodríguez. Long distance dispersal in the assembly of floras: A review of progress and prospects in North America . J Syst Evol, 2018, 56(5): 430-448.
[6] David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae) . J Syst Evol, 2018, 56(4): 340-359.
[7] Chaoju Qian, Yong Shi, Yuan Liu, Xia Yan, Xiao-Fei Ma. Phylogenetics and dispersal patterns of Brassicaceae around the Qinghai–Tibet Plateau . J Syst Evol, 2018, 56(3): 202-217.
[8] Marc S. Appelhans, Sabrina Krohm, Sara Manafzadeh, Jun Wen. Phylogenetic placement of Psilopeganum, a rare monotypic genus of Rutaceae (the citrus family) endemic to China . J Syst Evol, 2016, 54(5): 535-544.
[9] Shuo YU, Miao-Miao SHI, Xiao-Yong CHEN. Species diversity and distribution of Ruppia in China: Potential roles of long-distance dispersal and environmental factors . J Syst Evol, 2014, 52(2): 231-239.
[10] Feng-Juan MOU, Dian-Xiang ZHANG. Chromosome studies in the tribe Clauseneae and the cytological homogeneity in the orange subfamily (Aurantioideae, Rutaceae) . J Syst Evol, 2012, 50(5): 460-466.
[11] Kristin S. LAMM, Benjamin D. REDELINGS. Reconstructing ancestral ranges in historical biogeography: properties and prospects . J Syst Evol, 2009, 47(5): 369-382.
[12] Hong QIAN. Global comparisons of beta diversity among mammals, birds, reptiles, and amphibians across spatial scales and taxonomic ranks . J Syst Evol, 2009, 47(5): 509-514.
[13] Feng-Juan MOU, Dian-Xiang ZHANG. Glycosmis longipetala F. J. Mou & D. X. Zhang, a new species of Rutaceae from China . J Syst Evol, 2009, 47(2): 162-167.
[14] Paul Pui-Hay BUT, Alice Wing-Sem POON, Pang-Chui SHAW, Mark P. SIMMONS, Harald GREGER. Contribution of molecular cladistics to the taxonomy of Rutaceae in China* . J Syst Evol, 2009, 47(2): 144-150.
[15] Claire M. LORTS, Trevor BRIGGEMAN, Tao SANG. Evolution of fruit types and seed dispersal:A phylogenetic and ecological snapshot . J Syst Evol, 2008, 46(3): 396-404.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Linshu Zhao, Luxiang Liu, Jiayu Gu, Huijun Guo, Junhui Li, Yongdun Xie, Shirong Zhao. A Method to Improve Sample Preparation for Observing Stomata Guard Cells in Triticum aestivum[J]. Chin Bull Bot, 2014, 49(1): 120 -126 .
[2] TANG Zhong-Hua YU Jing-Hua YANG Feng-Jian ZU Yuan-Gang. Metabolic Biology of Plant Alkaloids[J]. Chin Bull Bot, 2003, 20(06): 696 -702 .
[3] Chunlin Long;Meilan Li . Status and Conservation Strategies of Community Plant Genetic Resources—A Case Study in Manlun, a Dai Village in Xishuangbanna[J]. Chin Bull Bot, 2006, 23(2): 177 -185 .
[4] KONG Hai-Yan JIA Gui-Xia WEN Yue-Ge. The Role of Calcium in Flower Development[J]. Chin Bull Bot, 2003, 20(02): 168 -177 .
[5] CHEN Jian-San and ZHAO Shi-Xu. A Study Cell Embryology of Rice 84-15[J]. Chin Bull Bot, 1999, 16(03): 284 -287 .
[6] Yanqing Zhou, Wanshen Wang, Xiangnan Wang, Hongying Duan. Recent Progress in DNA Molecular Markers and Gene Functions of Rehmannia glutinosa[J]. Chin Bull Bot, 2015, 50(5): 665 -672 .
[7] Han Yeliang. A Discussion on the Northern Boundary of the Subtropical Evergreen Broad-leaf Forest Zone in Anhui Province (Abstract)[J]. Chin J Plan Ecolo, 1981, 5(1): 54 -57 .
[8] Li Yi-de, Zeng Qing-bo, Wu Zhong-min, Du Zhi-hu, Zhou Guang-yi, Chen Bu-feng, Zhang Zhen-cai, Chen Huan-qiang. Study on Biomass of Tropical Mountain Rain Forest in Jianfengling, Hainan Province[J]. Chin J Plan Ecolo, 1992, 16(4): 293 -300 .
[9] XIA Jiang-Bao, ZHANG Guang-Can, SUN Jing-Kuan, LIU Xia. Threshold effects of photosynthetic and physiological parameters in Prunus sibirica to soil moisture and light intensity[J]. Chin J Plan Ecolo, 2011, 35(3): 322 -329 .
[10] Deng Lianhe, Zhou Xincheng. Suggestion to Protect the Community Composed of Rare Tree Species of Houhe Forest Area in Wufeng County, Hubei Province[J]. Chin J Plan Ecolo, 1982, 6(1): 84 .