J Syst Evol ›› 2018, Vol. 56 ›› Issue (5): 449-465.doi: 10.1111/jse.12423

• Research Articles • Previous Articles     Next Articles

The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae)

Daniel Spalink1,2*, Jocelyn Pender3, Marcial Escudero4, Andrew L. Hipp5,6, Eric H. Roalson7, Julian R. Starr8, Marcia J. Waterway9, Lynn Bohs1, and Kenneth J. Sytsma2   

  1. 1Department of Biology, University of Utah, 257 1400 E, Salt Lake City, UT 84112, USA
    2Department of Botany, University of Wisconsin-Madison, 430 Lincoln Drive, Madison, WI 53706, USA
    3Ottawa R&D Centre, Agriculture and Agri-Food Canada, ON, Canada
    4Department of Plant Biology and Ecology, University of Seville, Seville, Spain
    5The Morton Arboretum, 4100 Illinois Route 53, Lisle, IL 60515, USA
    6The Field Museum, 1400 S Lake Shore Dr, Chicago, IL 60605, USA
    7School of Biological Sciences, Washington State University, Pullman, WA 99163, USA
    8Department of Biology, University of Ottawa, Ottawa, Canada
    9Department of Plant Science, Macdonald Campus–McGill University, 21111 Lakeshore, Ste-Anne-de-Bellevue, H9 X 3V9, Canada
  • Received:2017-12-01 Accepted:2018-05-03 Online:2018-06-04 Published:2018-09-27

Abstract: Systematically quantifying diversity across landscapes is necessary to understand how clade history and ecological heterogeneity contribute to the origin, distribution, and maintenance of biodiversity. Here, we chart the spatial structure of diversity among all species in the sedge family (Cyperaceae) throughout the USA and Canada. We first identify areas of remarkable species richness, phylogenetic diversity, and functional trait diversity, and highlight regions of conservation priority. We then test predictions about the spatial structure of this diversity based on the historical biogeography of the family. Incorporating a phylogeny, over 400 000 herbarium records, and a database of functional traits mined from online floras, we find that species richness and functional trait diversity peak in the Northeastern USA, while phylogenetic diversity peaks along the Gulf of Mexico. Floristic turnover among assemblages increases significantly with distance, but phylogenetic turnover is twice as rapid along latitudinal gradients as along longitudinal gradients. These patterns reflect the expected distribution of Cyperaceae, which originated in the tropics but radiated in temperate regions. We identify assemblages with an abundance of rare, range‐restricted lineages, and assemblages composed of species generally lacking from diverse regions. We argue that both of these metrics are useful for developing targeted conservation strategies. We use the data generated here to establish future research priorities, including the testing of a series of hypotheses regarding the distribution of chromosome numbers, photosynthetic pathways, and resource partitioning in sedges.

Key words: beta-diversity, biogeography, C4photosynthesis, CANAPE, chromosome number, functional diversity, herbarium data, phylogenetic bet-diversity, phylogenetic diversity

[1] Joon Seon Lee, Seon‐Hee Kim, Sangryong Lee, Masayuki Maki, Koichi Otsuka, Andrey E. Kozhevnikov, Zoya V. Kozhevnikova, Jun Wen, and Seung‐Chul Kim. New insights into the phylogeny and biogeography of subfamily Orontioideae (Araceae) . J Syst Evol, 2019, 57(6): 616-632.
[2] He Tang, Jia Liu, Fei-Xiang Wu, Teresa Spicer, Robert A. Spicer, Wei-Yu-Dong Deng, Cong-Li Xu, Fan Zhao, Jian Huang, Shu-Feng Li, Tao Su, and Zhe-Kun Zhou. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene . J Syst Evol, 2019, 57(6): 670-677.
[3] Gisela M. Via do Pico, Yanina J. Pérez, María B. Angulo, and Massimiliano Dematteis. Cytotaxonomy and geographic distribution of cytotypes of species of the South American genus Chrysolaena (Vernonieae, Asteraceae) . J Syst Evol, 2019, 57(5): 451-467.
[4] Hong‐Mei Liu, Libor Ekrt, Petr Koutecky, Jaume Pellicer, Oriane Hidalgo, Jeannine Marquardt, Fatima Pustahija, Atsushi Ebihara, Sonja Siljak‐Yakovlev, Mary Gibby, Ilia Leitch, and Harald Schneider. Polyploidy does not control all: Lineage‐specific average chromosome length constrains genome size evolution in ferns . J Syst Evol, 2019, 57(4): 418-430.
[5] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[6] Liang Zhao, Daniel Potter, Yuan Xu, Pei-Liang Liu, Gabriel Johnson, Zhao-Yang Chang, Jun Wen. Phylogeny and spatio‐temporal diversification of Prunus subgenus Laurocerasus section Mesopygeum (Rosaceae) in the Malesian region . J Syst Evol, 2018, 56(6): 637-651.
[7] Joseph T. Miler, Garry Jolley-Rogers, Brent D. Mishler, and Andrew H. Thornhill. Phylogenetic diversity is a better measure of biodiversity than taxon counting . J Syst Evol, 2018, 56(6): 663-667.
[8] Marc S. Appelhans, Jun Wen, Marco Duretto, Darren Crayn, Warren L. Wagner. Historical biogeography of Melicope (Rutaceae) and its close relatives with a special emphasis on Pacific dispersals . J Syst Evol, 2018, 56(6): 576-599.
[9] Melanie A. Link-Pérez and Shawn W. Laffan. Fern and lycophyte diversity in the Pacific Northwest: Patterns and predictors . J Syst Evol, 2018, 56(5): 498-522.
[10] Monte Garroutte, Falk Huettmann, Campbell O. Webb, and Stefanie M. Ickert-Bond. Biogeographic and anthropogenic correlates of Aleutian Islands plant diversity: A machine‐learning approach . J Syst Evol, 2018, 56(5): 476-497.
[11] David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae) . J Syst Evol, 2018, 56(4): 340-359.
[12] Farzaneh Habibi, Petr Vít, Mohammadreza Rahiminejad, Bohumil Mandák. Towards a better understanding of the Chenopodium album aggregate (Amaranthaceae) in the Middle East: A karyological, cytometric and morphometric investigation . J Syst Evol, 2018, 56(3): 231-242.
[13] Guang-Yan Wang , Yong-Ping Yang. Hypothesizing the origin, migration routes, and distribution patterns of Ophiopogon (Asparagaceae) in East and Southeast Asia . J Syst Evol, 2018, 56(3): 194-201.
[14] Vicki A. Funk. Collections-based science in the 21st Century . J Syst Evol, 2018, 56(3): 175-193.
[15] Nattapon Nopporncharoenkul, Jatuporn Chanmai, Thaya Jenjittikul, Kesara Anamthawat-Jónsson, Puangpaka Soontornchainaksaeng. Chromosome number variation and polyploidy in 19 Kaempferia (Zingiberaceae) taxa from Thailand and one species from Laos . J Syst Evol, 2017, 55(5): 466-476.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yang Li-rui and Cheng Mu-chu. Relationship between Plant Stress Resistance and Photorespiration[J]. Chin Bull Bot, 1991, 8(01): 43 -47 .
[2] . [J]. Chin Bull Bot, 1996, 13(专辑): 74 -75 .
[3] He Ping. Investigation of Pest Species and the Control of the Main Insect Pests in the Exhibition Green House of Beijing Botanical Garden[J]. Chin Bull Bot, 1996, 13(02): 44 -47 .
[4] Cui Kai-rong;Chen Ke-ming;Wang Xiao-zhe and Wang Ya-fu. Current Reseach on Plant Somatic Embryogenesis[J]. Chin Bull Bot, 1993, 10(03): 14 -20 .
[5] Huang Yao Li Chao-luan Ma Cheng Wu Nai-hu. Chloroplast DNA and Its Application to Plant Systematic Studies[J]. Chin Bull Bot, 1994, 11(02): 11 -25 .
[6] WANG Pu ZHAO Xiu-Qin. The Effect of Extracting Condition on the Analysis Result of Allelochemicals in Wheat Straw[J]. Chin Bull Bot, 2001, 18(06): 735 -738 .
[7] Yanxia He;Zicheng Wang*. Variation of DNA Methylation in Arabidopsis thaliana Seedlings After the Cryopreservation[J]. Chin Bull Bot, 2009, 44(03): 317 -322 .
[8] Yiting Shi, ShuhuaYang. Chinese Scientists Made Breakthrough in Study on Ethylene Signaling Transduction in Plants[J]. Chin Bull Bot, 2016, 51(3): 287 -289 .
[9] L Chao-Qun, SUN Shu-Cun. A REVIEW ON THE DISTRIBUTION PATTERNS OF CARBON DENSITY IN TERRESTRIAL ECOSYSTEMS[J]. Chin J Plan Ecolo, 2004, 28(5): 692 -703 .
[10] LONG Wen-Xing, DING Yi, ZANG Run-Guo, YANG Min, CHEN Shao-Wei. Environmental characteristics of tropical cloud forests in the rainy season in Bawangling National Nature Reserve on Hainan Island, South China[J]. Chin J Plan Ecolo, 2011, 35(2): 137 -146 .