J Syst Evol ›› 2019, Vol. 57 ›› Issue (4): 418-430.doi: 10.1111/jse.12525

• Research Articles • Previous Articles    

Polyploidy does not control all: Lineage‐specific average chromosome length constrains genome size evolution in ferns

Hong‐Mei Liu1, Libor Ekrt2, Petr Koutecky2, Jaume Pellicer3, Oriane Hidalgo3,4,5, Jeannine Marquardt4,5,6, Fatima Pustahija7, Atsushi Ebihara8, Sonja Siljak‐Yakovlev9, Mary Gibby10, Ilia Leitch3, and Harald Schneider11*   

  1. 1Key Laboratory of Tropical Plant Resources and Sustainable Use, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
    2Department of Botany, Faculty of Science, University of South Bohemia, Ceske Budejovice 370 05, Czech Republic
    3Royal Botanic Gardens, Kew, Richmond TW3 3DS, UK
    4Laboratori de Botànica, Unitat associada al CSIC, Facultat de Farmàcia i Ciències de l’Alimentació, Universitat de Barcelona, Barcelona 08028, Spain
    5Department of Life Sciences, Natural History Museum, London SW7 5BD, UK
    6Botanischer Garten und Botanisches Museum Berlin Dahlem & Freie Universität Berlin, Berlin 14195, Germany
    7Faculty of Forestry, University of Sarajevo, Sarajevo 71000, Bosnia and Herzegovina
    8Department of Botany, National Museum of Nature and Science, Tsukuba 305‐0005, Japan
    9Laboratoire d’Ecologie, Systématique et Evolution, Université Paris‐Sud, UPS‐CNRS‐AgroParisTech, Orsay France
    10Royal Botanic Garden Edinburgh, Edinburgh EH3 5LR, UK
    11Center for Integrative Conservation, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Menglun 666303, China
  • Received:2019-03-09 Accepted:2019-06-19 Online:2019-06-26 Published:2019-07-01


Recent studies investigating the evolution of genome size diversity in ferns have shown that they have a distinctive genome profile compared with other land plants. Ferns are typically characterized by possessing medium‐sized genomes, although a few lineages have evolved very large genomes. Ferns are different from other vascular plant lineages as they are the only group to show evidence for a correlation between genome size and chromosome number. In this study, we aim to explore whether the evolution of fern genome sizes is not only shaped by chromosome number changes arising from polyploidy but also by constraints on the average amount of DNA per chromosome. We selected the genus Asplenium L. as a model genus to study the question because of the unique combination of a highly conserved base chromosome number and a high frequency of polyploidy. New genome size data for Asplenium taxa were combined with existing data and analyzed within a phylogenetic framework. Genome size varied substantially between diploid species, resulting in overlapping genome sizes among diploid and tetraploid spleenworts. The observed additive pattern indicates the absence of genome downsizing following polyploidy. The genome size of diploids varied non‐randomly and we found evidence for clade‐specific trends towards larger or smaller genomes. The 578‐fold range of fern genome sizes have arisen not only from repeated cycles of polyploidy but also through clade‐specific constraints governing accumulation and/or elimination of DNA.

Key words: chromosome number, DNA‐C value, evolutionary constraint, evolvability, genome evolution, land plant, macroevolution, plant diversity, whole genome duplication

[1] Joon Seon Lee, Seon‐Hee Kim, Sangryong Lee, Masayuki Maki, Koichi Otsuka, Andrey E. Kozhevnikov, Zoya V. Kozhevnikova, Jun Wen, and Seung‐Chul Kim. New insights into the phylogeny and biogeography of subfamily Orontioideae (Araceae) . J Syst Evol, 2019, 57(6): 616-632.
[2] Gisela M. Via do Pico, Yanina J. Pérez, María B. Angulo, and Massimiliano Dematteis. Cytotaxonomy and geographic distribution of cytotypes of species of the South American genus Chrysolaena (Vernonieae, Asteraceae) . J Syst Evol, 2019, 57(5): 451-467.
[3] Ying Yu, Hong-Mei Liu, Jun-Bo Yang, Wen-Zhang Ma, Silvia Pressel, Yu-Huan Wu, and Harald Schneider. Exploring the plastid genome disparity of liverworts . J Syst Evol, 2019, 57(4): 382-394.
[4] Ledis Regalado, Alexander R. Schmidt, Patrick Müller, Lisa Niedermeier, Michael Krings, and Harald Schneider. Heinrichsia cheilanthoides gen. et sp. nov., a fossil fern in the family Pteridaceae (Polypodiales) from the Cretaceous amber forests of Myanmar . J Syst Evol, 2019, 57(4): 329-338.
[5] Joseph T. Miler, Garry Jolley-Rogers, Brent D. Mishler, and Andrew H. Thornhill. Phylogenetic diversity is a better measure of biodiversity than taxon counting . J Syst Evol, 2018, 56(6): 663-667.
[6] Daniel Spalink, Jocelyn Pender, Marcial Escudero, Andrew L. Hipp, Eric H. Roalson, Julian R. Starr, Marcia J. Waterway, Lynn Bohs, and Kenneth J. Sytsma. The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae) . J Syst Evol, 2018, 56(5): 449-465.
[7] Farzaneh Habibi, Petr Vít, Mohammadreza Rahiminejad, Bohumil Mandák. Towards a better understanding of the Chenopodium album aggregate (Amaranthaceae) in the Middle East: A karyological, cytometric and morphometric investigation . J Syst Evol, 2018, 56(3): 231-242.
[8] Nattapon Nopporncharoenkul, Jatuporn Chanmai, Thaya Jenjittikul, Kesara Anamthawat-Jónsson, Puangpaka Soontornchainaksaeng. Chromosome number variation and polyploidy in 19 Kaempferia (Zingiberaceae) taxa from Thailand and one species from Laos . J Syst Evol, 2017, 55(5): 466-476.
[9] Harald Schneider, Hong-Mei Liu, Yan-Fen Chang, Daniel Ohlsen, Leon R. Perrie, Lara Shepherd, Michael Kessler, Dirk Karger, Sabine Hennequin, Jeannine Marquardt, Stephen Russell, Stephen Ansell, Ngan Thi Lu, Peris Kamau, Josmaily Lóriga Pineiro, Ledis Regalado, Jochen Heinrichs, Atsushi Ebihara, Alan R. Smith, Mary Gibby. Neo- and Paleopolyploidy contribute to the species diversity of Asplenium—the most species-rich genus of ferns . J Syst Evol, 2017, 55(4): 353-364.
[10] Erin M. Sigel. Genetic and genomic aspects of hybridization in ferns . J Syst Evol, 2016, 54(6): 638-655.
[11] Stefanie M. Ickert-Bond, Susanne S. Renner. The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times . J Syst Evol, 2016, 54(1): 1-16.
[12] Qiang WANG, Xin-Tang MA, De-Yuan HONG. Phylogenetic analyses reveal three new genera of the Campanulaceae . J Syst Evol, 2014, 52(5): 541-550.
[13] Bo XU, Zhi-Min LI, Hang SUN. Plant diversity and floristic characters of the alpine subnival belt flora in the Hengduan Mountains, SW China . J Syst Evol, 2014, 52(3): 271-279.
[14] Harald SCHNEIDER, Li-Juan HE, Jeannine MARQUARDT, Li WANG, Jochen HEINRICHS, Sabine HENNEQUIN, Xian-Chun ZHANG. Exploring the origin of the latitudinal diversity gradient: Contrasting the sister fern genera Phegopteris and Pseudophegopteris . J Syst Evol, 2013, 51(1): 61-70.
[15] Jinling HUANG, Jipei YUE. Horizontal gene transfer in the evolution of photosynthetic eukaryotes . J Syst Evol, 2013, 51(1): 13-29.
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[9] Dapeng Li;Min Zhang;Qian Gao;Yong Hu;Yikun He*. An Emerging Picture of Plastid Division in Higher Plants[J]. Chin Bull Bot, 2009, 44(01): 43 -51 .
[10] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .