J Syst Evol ›› 2015, Vol. 53 ›› Issue (6): 499-511.doi: 10.1111/jse.12145

• Research Articles • Previous Articles     Next Articles

Late Miocene Palaeocarya (Engelhardieae: Juglandaceae) from Southwest China and its biogeographic implications

Hong-Hu Meng1,3, Tao Su1, Yong-Jiang Huang2, Hai Zhu2,3, and Zhe-Kun Zhou1,2*   

  1. 1Key Laboratory of Tropical Forest Ecology, Xishuangbanna Tropical Botanical Garden, Chinese Academy of Sciences, Mengla, China
    2Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming, China
    3University of Chinese Academy of Sciences, Beijing, China
  • Received:2014-10-20 Online:2015-01-28 Published:2015-03-30

Abstract: Fossil fruits of Palaeocarya (Juglandaceae) are described from late Miocene sediments of southeastern Yunnan, China. The fruits present a tri-lobed wing consisting of an intact oblong-ovate middle lobe and two lateral lobes. The lobes are apically obovate, and have pinnate venation. The middle lobe is thicker at the base and gradually tapers to the apex. The nutlet, located at the base of the winged fruit, is round and hispid, and is subdivided by a septum into two compartments. Based on extensive morphological comparisons to previously documented fossil fruits, we found that the fossil fruits align most closely with members of the genusPalaeocarya, but have a unique combination of characters. Thus, we describe the fossils as a new species, Palaeocarya hispida sp. nov. This species represents an important range expansion for low-latitude occurrences of Palaeocarya in the late Miocene and therefore substantially improves our understanding of the biogeographic history of the genus. We propose that the wide distribution of Palaeocarya and relatively narrow distributions of close relatives, Engelhardia, Alfaropsis, and Oreomunnea, might be associated with a stepwise cooling and a major ice sheet expansion in the Antarctic and Arctic from the late middle Miocene to early Pliocene. In particular, the climatic oscillations during the Quaternary, such as the last glacial maximum, might have led to a decrease in the geographic distribution of Engelhardieae.

Key words: biogeography, Engelhardieae, fossil fruit, Juglandaceae, late Miocene, Palaeocarya

[1] He Tang, Jia Liu, Fei-Xiang Wu, Teresa Spicer, Robert A. Spicer, Wei-Yu-Dong Deng, Cong-Li Xu, Fan Zhao, Jian Huang, Shu-Feng Li, Tao Su, and Zhe-Kun Zhou. Extinct genus Lagokarpos reveals a biogeographic connection between Tibet and other regions in the Northern Hemisphere during the Paleogene . J Syst Evol, 2019, 57(6): 670-677.
[2] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[3] Liang Zhao, Daniel Potter, Yuan Xu, Pei-Liang Liu, Gabriel Johnson, Zhao-Yang Chang, Jun Wen. Phylogeny and spatio‐temporal diversification of Prunus subgenus Laurocerasus section Mesopygeum (Rosaceae) in the Malesian region . J Syst Evol, 2018, 56(6): 637-651.
[4] Marc S. Appelhans, Jun Wen, Marco Duretto, Darren Crayn, Warren L. Wagner. Historical biogeography of Melicope (Rutaceae) and its close relatives with a special emphasis on Pacific dispersals . J Syst Evol, 2018, 56(6): 576-599.
[5] Monte Garroutte, Falk Huettmann, Campbell O. Webb, and Stefanie M. Ickert-Bond. Biogeographic and anthropogenic correlates of Aleutian Islands plant diversity: A machine‐learning approach . J Syst Evol, 2018, 56(5): 476-497.
[6] Daniel Spalink, Jocelyn Pender, Marcial Escudero, Andrew L. Hipp, Eric H. Roalson, Julian R. Starr, Marcia J. Waterway, Lynn Bohs, and Kenneth J. Sytsma. The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae) . J Syst Evol, 2018, 56(5): 449-465.
[7] David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae) . J Syst Evol, 2018, 56(4): 340-359.
[8] Guang-Yan Wang , Yong-Ping Yang. Hypothesizing the origin, migration routes, and distribution patterns of Ophiopogon (Asparagaceae) in East and Southeast Asia . J Syst Evol, 2018, 56(3): 194-201.
[9] Vicki A. Funk. Collections-based science in the 21st Century . J Syst Evol, 2018, 56(3): 175-193.
[10] AJ Harris, Ping-Ting Chen, Xin-Wei Xu, Jian-Qiang Zhang, Xue Yang, Jun Wen. A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family . J Syst Evol, 2017, 55(2): 124-141.
[11] Thaís Elias Almeida, Alexandre Salino. State of the art and perspectives on neotropical fern and lycophyte systematics . J Syst Evol, 2016, 54(6): 679-690.
[12] Jun Wen, Ze-Long Nie, Stefanie M. Ickert-Bond. Intercontinental disjunctions between eastern Asia and western North America in vascular plants highlight the biogeographic importance of the Bering land bridge from late Cretaceous to Neogene . J Syst Evol, 2016, 54(5): 469-490.
[13] Stefanie M. Ickert-Bond, Susanne S. Renner. The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times . J Syst Evol, 2016, 54(1): 1-16.
[14] Sheng-Bin Chen, J. W. Ferry Slik, Jie Gao, Ling-Feng Mao, Meng-Jie Bi, Meng-Wei Shen, Ke-Xin Zhou. Latitudinal diversity gradients in bryophytes and woody plants: Roles of temperature and water availability . J Syst Evol, 2015, 53(6): 535-545.
[15] Jian-Ying XIANG, Jun WEN, Hua PENG. Evolution of the eastern Asian–North American biogeographic disjunctions in ferns and lycophytes . J Syst Evol, 2015, 53(1): 2-32.
Full text



[1] . [J]. Chin Bull Bot, 1994, 11(专辑): 40 .
[2] LING YiZHAO Wu-Ling. Specific Expression of Pea Isoactin Genes[J]. Chin Bull Bot, 2001, 18(01): 76 -80 .
[3] Gu Li-ping and Zhou Ruan-bao. Advances on the Study of the Role of Jasmanates in Plants[J]. Chin Bull Bot, 1997, 14(01): 31 -35 .
[4] Li Xian-zhang. Flower Senescence and Preservation of Cut Flowers[J]. Chin Bull Bot, 1994, 11(04): 26 -32 .
[5] Yuan Guo-bi Li Da-jve Wu Zheng-rong Han Yun-zhou Fan Zheng-xing. 2. A Primary Screening of High Oil Content Safflower Cultivars[J]. Chin Bull Bot, 1983, 1(02): 31 -33 .
[6] Chen Yin-shuo. Review and Prospect of Palynology[J]. Chin Bull Bot, 1992, 9(02): 16 -20 .
[7] Wu Guo-liang;Shi Yan-shan and Chang Liu-yin. Effects of Plant Hormones on Tissue Derived from Stems of Zanthoxylum Bungeanum Maxim[J]. Chin Bull Bot, 1995, 12(增刊): 59 -60 .
[8] Liu Geng-feng Zhang Ying-nan Tang Sai-wen. Studies on the Cold-Resister CR-9 for Increasing the Cold Resistance of Orange[J]. Chin Bull Bot, 1994, 11(特辑): 125 -128 .
[9] Min Chen;Jianyun Peng;Baoshan Wang*. Na+ Transport and Plant Salt Resistance at the Whole Plant Level[J]. Chin Bull Bot, 2008, 25(04): 381 -391 .
[10] Meiyu Wang Tianhong Zhao Weiwei Zhang Dan Guo Xingyuan He Shilei Fu. Effects of Elevated CO2 Concentration on Photosynthetic Characteristics[J]. Chin Bull Bot, 2007, 24(04): 470 -476 .