J Syst Evol ›› 2017, Vol. 55 ›› Issue (3): 200-207.doi: 10.1111/jse.12242

• Research Articles • Previous Articles     Next Articles

Identification and characterization of Rubisco activase genes in Oryza punctata

Si Xu1†, Zong-Yan Qin1, Pi-Chang Gong2, Qian-Li Dong3, and Ying Bao1†*   

  1. 1School of Life Sciences, Qufu Normal University, Qufu 273165, Shandong, China
    2State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 100093, China
    3Key Laboratory of Molecular Epigenetics of the Ministry of Education, Northeast Normal University, Changchun 130024, China These authors contributed equally to this work.
  • Received:2016-09-27 Online:2017-01-25 Published:2017-05-12

Abstract: Rubisco activase (Rca), a specific chaperone, catalyzes the in vivo activation of Rubisco, and thus plays a major role in plant photosynthesis. Although the genes encoding Rubisco activase have been studied in many model or economic plants, few studies have analyzed their homologs in plants of closely related crop species. In this study, an Rca gene was identified and characterized in a wild relative of rice, Oryza punctata Kotschy ex Steud. The gene was 2747 bp long and possessed six exons and five introns with 47% GC content. Furthermore, cDNA sequencing produced two transcripts, RcaL and RcaS, that differed in the sequence by an inclusion of 99 bp at the carboxy terminus of RcaL. Sequence comparison between the two transcripts and the genomic DNA showed that there was a 20-bp alternative splicing event that occurred at the fifth intron of the gene leading to the synthesis of a short polypeptide. The leaf transcriptome analysis showed that RcaS had a higher expression level than that of RcaL in a normal growth environment. In addition, the yeast two-hybrid assays showed the small isoform of Rubisco activase in close contact with the large subunit of the Rubisco in this species, supporting the side-on binding model of interaction between two proteins. This study broadens our understanding of the molecular characteristics of some essential genes in photosynthesis.

Key words: Rubisco activase, alternative splicing, wild rice, expression divergence, protein interaction

[1] Luo-Yan Zhang, Zhu Zhu, Ji Yang. Structural and functional diversification of HORMA domain-containing proteins . J Syst Evol, 2015, 53(4): 321-329.
[2] Lin Li, Xian-Xian Yu, Chun-Ce Guo, Xiao-Shan Duan, Hong-Yan Shan, Rui Zhang, Gui-Xia Xu, Hong-Zhi Kong. Interactions among proteins of floral MADS-box genes in Nuphar pumila (Nymphaeaceae) and the most recent common ancestor of extant angiosperms help understand the underlying mechanisms of the origin of the flower . J Syst Evol, 2015, 53(4): 285-296.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Zhang Hong Jian Ling-cheng Li Guang-min. Studies of Plant Cold-Resister for Enhancing Cold-Resistant Ability and Cold Stability of Cellular Membrane System in Cucumber Seedlings[J]. Chin Bull Bot, 1994, 11(特辑): 154 -162 .
[2] Zheng Guang-hua. A survey of seed physiology in China[J]. Chin Bull Bot, 1983, 1(01): 12 -16 .
[3] Jiang Gao-ming. A Study on the Historical Development Present Characteristics and Managements of the Urban Vegetation of Chengde City[J]. Chin Bull Bot, 1994, 11(04): 33 -38 .
[4] Fei Li;Yong Hu;Fan Wang;Zhen Zhang;Xianglin Liu;Sulan Bai;Yikun He. orting of early developmental non-hair cells in root by flow cytometry in Arabidopsis thaliana[J]. Chin Bull Bot, 2010, 45(04): 460 -465 .
[5] He Guan-fu. Retrospect and Prospect of Plant Chemotaxonomy in China[J]. Chin Bull Bot, 1983, 1(02): 7 -13 .
[6] Huang Ju-fu. The Susceptibility of Nitrogenase FeMo Protein to Dioxygen[J]. Chin Bull Bot, 1988, 5(03): 135 -139 .
[7] Wen Yuan-ying;Wang Shu-xiu;Wang Lei and Hu Chang-xu. A Preliminary Study of the Constituents of Essential Oil of Osyris wightiana[J]. Chin Bull Bot, 1991, 8(01): 49 -50 .
[8] Ying Li;Kaijing Zuo;Kexuan Tang. A Survey of Functional Studies of the GH3 Gene Family in Plants[J]. Chin Bull Bot, 2008, 25(05): 507 -515 .
[9] Bingyu Zhang;Xiaohua Su*;Xiangming Zhou. Gene Regulation in Flower Development in the Forest[J]. Chin Bull Bot, 2008, 25(04): 476 -482 .
[10] Suxia Xu;Liangsheng Wang;Qingyan Shu;Minghua Su;Qingyun Huang;Wenhui Zhang;Gongshe Liu . Progress of Study of the Biology of the Resource Plant Bougainvillea[J]. Chin Bull Bot, 2008, 25(04): 483 -490 .