J Syst Evol ›› 2019, Vol. 57 ›› Issue (2): 200-208.doi: 10.1111/jse.12455

• Research Articles • Previous Articles    

More Malpighiales: Woods of Achariaceae and/or Salicaceae from the Deccan Intertrappean beds, India

Rashmi Srivastava1*, Regis B. Miller2, and Pieter Baas3   

  1. 1Former Scientist, Birbal Sahni Institute of Palaeosciences, 53 University Road, Lucknow-226007, India
    2Wood Identification & Information Specialist, 23 Mountain Ash Trail, Madison, WI 53717-1508, USA 3 Naturalis Biodiversity Center, PO Box 9517, 2300 RA Leiden, The Netherlands
  • Received:2018-04-19 Accepted:2018-08-05 Online:2019-03-28 Published:2019-03-01

Abstract: The families Achariaceae and Salicaceae (Malpighiales) are characterized by wood anatomical ranges that partly overlap. Formerly these families were treated together in the polyphyletic Flacourtiaceae and a much more narrowly circumscribed Salicaceae. Here we attribute two recently collected fossil woods from the Deccan Intertrappean Beds to the clade that contain these two families, i.e., the Parietal Clade of the Malpighiales. The new genus Elioxylon shares features with several extant genera of Achariaceae and Salicaceae, but does not completely match with any of them. A new record of Hydnocarpoxylon indicum Bande & Khatri is a good match for extant Hydnocarpus Gaertn. (Achariaceae). Elioxylon and Hydnocarpoxylon share an absence of parenchyma, the presence of septate fibres and 1–3 seriate heterocellular rays with long uniseriate margins consistent with Achariaceae and Salicaceae. Elioxylon has mixed simple and scalariform perforations, whereas Hydnocarpxylon has exclusively scalariform perforations. Other Deccan fossils formerly attributed to “Flacourtiaceae” in the literature are critically discussed and mostly excluded from Achariaceae and Salicaceae. Elioxylon and Hydnocarpoxylon from the Maastrichtian ‐ Danian of India are the oldest fossil records of the Parietal Clade of the Malpighiales. With their occurrence on the Indian plate during its northward journey from Gondwana to Laurasia, these fossils provide further support for an ‘out‐of‐India’ hypothesis for Achariaceae and/or Salicaceae. “Baileyan trends” in vessel perforation plate and vessel grouping evolution are apparent in the phylogeny of the Parietal Clade.

Key words: Elioxylon, Hydnocarpoxylon, Maastrichtian-Danian, parietal clade, wood anatomy

No related articles found!
Full text



[1] Zhang Zhen-jue. Some Principles Governing Shedding of Flowers and Fruits in Vanilla fragrans[J]. Chin Bull Bot, 1985, 3(05): 36 -37 .
[2] Qian Gao;Yuying Liu;Yinan Fei;Dapeng Li;Xianglin Liu* . Research Advances into the Root Radial Patterning Gene SHORT-ROOT[J]. Chin Bull Bot, 2008, 25(03): 363 -372 .
[3] Wang Bao-shan;Zou Qi and Zhao Ke-fu. Advances in Mechanism of Crop Salt Tolerance and Strategies for Raising Crop Salt Tolerance[J]. Chin Bull Bot, 1997, 14(增刊): 25 -30 .
[4] HE Feng WU Zhen-Bin. Application of Aquatic Plants in Sewage Treatment and Water Quality Improvement[J]. Chin Bull Bot, 2003, 20(06): 641 -647 .
[5] TIAN Bao-Lin WANG Shi-Jun LI Cheng-Sen CHEN Gui-Ren. An Approach on the Origin Center, Evolution Center and the Mechanics of Evolution and Extinction of the Late Palaeozoic Cathaysian Flora[J]. Chin Bull Bot, 2000, 17(专辑): 21 -33 .
[6] ZHANG Yan FANG Li LI Tian-Fei YAO Zhao-BingJIANG Jin-Hui. Effect of Calcium on the Heat Tolerance and Active Oxygen Metabolism of Tobacco Leaves[J]. Chin Bull Bot, 2002, 19(06): 721 -726 .
[7] JIA Hu-Sen LI De-QuanHAN Ya-Qin. Cytochrome b-559 in Chloroplasts[J]. Chin Bull Bot, 2001, 18(02): 158 -162 .
[8] Wei Sun;Chonghui Li;Liangsheng Wang;Silan Dai*. Analysis of Anthocyanins and Flavones in Different-colored Flowers of Chrysanthemum[J]. Chin Bull Bot, 2010, 45(03): 327 -336 .
[9] Dapeng Li;Min Zhang;Qian Gao;Yong Hu;Yikun He*. An Emerging Picture of Plastid Division in Higher Plants[J]. Chin Bull Bot, 2009, 44(01): 43 -51 .
[10] . Phosphate_Stress Protein and Iron_Stress Protein in Plants[J]. Chin Bull Bot, 2001, 18(05): 571 -576 .