J Syst Evol ›› 2020, Vol. 58 ›› Issue (6): 841-852.DOI: 10.1111/jse.12698

• Research Articles • Previous Articles     Next Articles

Phylogenomics of the hyperdiverse daisy tribes: Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae

Linda E. Watson1 * , Carolina M. Siniscalchi2,3 , and Jennifer Mandel3   

  1. 1 Department of Plant Biology, Ecology, & Evolution, Oklahoma State University, Stillwater, OK 74078, USA
    2 Department of Biological Sciences, Mississippi State University, Mississippi State, MS 39762, USA
    3 Department of Biological Sciences, Center for Biodiversity Research, University of Memphis, Memphis, TN 38152, USA
  • Received:2020-08-04 Accepted:2020-10-09 Online:2020-10-16 Published:2020-11-01


Asteraceae account for 10% of all flowering plant species, and 35%–40% of these are in five closely related tribes that total over 10 000 species. These tribes include Anthemideae, Astereae, Calenduleae, Gnaphalieae, and Senecioneae, which form one of two enormous clades within Subfamily Asteroideae. We took a phylogenomics approach to resolve evolutionary relationships among these five tribes. We sampled the nuclear and plastid genomes via HybSeq target enrichment and genome skimming, and recovered 74 plastid genes and nearly 1000 nuclear loci, known as Conserved Orthologous Sequences. We tested for conflicting support in both data sets and used network analyses to assess patterns of reticulation to explain the early evolutionary history of this lineage, which has experienced whole‐genome duplications and rapid radiations. We found concordance and conflicting support in both data sets and documented four ancient hybridization events. Due to the timing of the early radiation of this five‐tribe lineage, shortly before the Eocene–Oligocene extinction event (34 MYA), early lineages were likely lost, obscuring some details of their early evolutionary history.

Key words: Compositae, discordance, phylogenomics, reticulation