Not found Virtual Issue to Celebrate the Legacy and Life of Professor Wen-Tsai Wang
    s

    Professor Wen-Tsai Wang (June 5, 1926–November 16, 2022) was a legendary plant taxonomist in Institute of Botany of the Chinese Academy of Sciences (CAS). He made significant contributions to advance the understanding of the flora of China, biogeography of eastern Asia, and biodiversity research in the vast region of the Hengduan Mountains. He helped train several generations of plant taxonomists in China. Professor Wang was one of the most important participants of compiling the enormous 8-volume series Iconographia Cormophytorum Sinicorum. This book series has been widely used by scientific institutions, colleges and universities to train botanists and young students in biology throughout China and became the most important botanical classics from China. Professor Wang also published several important papers on distribution patterns and migration routes in the Eastern Asiatic Region and these papers have inspired many studies on eastern Asian biogeography. The two volumes on vascular plants of the Hengduan Mountains he edited documented all the plants collected in this vast region based on specimens made by Chinese and western collectors. This was a major achievement at the time when herbarium collections were not easily available online nor digitized. The completion of the two volumes set the foundation for systematic, biogeographic and conservation work in this vast evolutionary hotspot in Asia.

    Professor Wang served as the Editor-in-Chief of Acta Phytotaxonomica Sinica (now Journal of Systematics and Evolution or JSE) for six years from 1982 to 1988. To honor Prof. Wang’s contributions to plant taxonomy, floristics and eastern Asian biogeography and his efforts to train the next-generation taxonomists, JSE herein publishes a virtual special issue to celebrate the life and legacy of Professor Wang.

    Default Latest Most Read
    Please wait a minute...
    For Selected: Toggle Thumbnails
      
    Collections-based systematics in the new age of discovery: Celebrating the legacy and life of Professor Wen-Tsai Wang
    Jun Wen, Lei Xie, Zhi-Yun Zhang, Yan Liang, and Song Ge
    J Syst Evol 2023, 61 (1): 1-10.  
    doi: 10.1111/jse.12945

    Professor Wen-Tsai Wang (王文采, June 5, 1926–November 16, 2022) was an academician of the Chinese Academy of Sciences (CAS) and a legendary plant taxonomist at the Institute of Botany of CAS (Fig. 1). Herein, we organize a virtual special issue in Journal of Systematics and Evolution (JSE) to celebrate the legacy and life of Professor Wang, who was a leading plant taxonomist in China and made important contributions toward advancing the understanding of the flora of China, the biogeography of eastern Asia, and biodiversity research in the vast Hengduan Mountains. He served as the Editor-in-Chief of Acta Phytotaxonomica Sinica (now JSE) for 6 years from 1982 to 1988, and trained several generations of plant taxonomists in China (Li, 2001).

      
    An updated Chinese vascular plant tree of life: Phylogenetic diversity hotspots revisited
    Hai-Hua Hu, Bing Liu, Yi-Shuo Liang, Jian-Fei Ye, Saddam Saqib, Zhen Meng, Li-Min Lu, and Zhi-Duan Chen
    J Syst Evol 2020, 58 (5): 663-672.  
    doi: 10.1111/jse.12642

    Large‐scale phylogenies provide a framework for interdisciplinary investigations in taxonomy, evolutionary biology, biogeography, ecology, and conservation. Integration of regional tree of life and species distribution data has greatly promoted spatial phylogenetic studies on biodiversity, floristic assembly, and biogeographic regionalization. In this study, we updated the phylogenetic tree of Chinese vascular plants by integrating data from public databases and sequences newly generated by our laboratory, to facilitate the exploration of floristic and ecological questions at a country scale. A phylogenetic tree with 15 092 tips and 14 878 species was obtained, including 13 663 species (44.0%) and 2953 genera (95.7%) native to China. Only two families (Corsiaceae and Mitrastemonaceae) and 133 genera native to China are not sampled in this study. Low proportion of sampling is detected in orders with high species diversity and those with low species diversity. The Hengduan Mountains, plus the western Qinghai–Tibet Plateau and western Xinjiang, show the greatest gap of target molecular data for angiosperms. Our phylogeny of Chinese vascular plants recovers relationships among and within major lineages that are highly congruent with published phylogenies at a broader scale. Most families (98.7%) are supported as monophyletic, and 573 genera (17.9%) are recognized as non‐monophyletic. Finally, hotspots of phylogenetic diversity for the Chinese angiosperms at both the genus and species levels are identified based on our phylogram, implicating conservation priorities for phylogenetic diversity. The updated phylogeny of Chinese vascular plants is publically available to generate subtrees through our automated phylogeny assembly tool SoTree in the DarwinTree platform (http://www.darwintree.cn/flora-sotree-v2/index.shtml).

    Cited: Web of Science(20)
      
    Diversity of higher plants in China
    Dan Xie, Bo Liu, Li-Na Zhao, Tirtha Raj Pandey, Hui-Yuan Liu, Zhang-Jian Shan, and Hai-Ning Qin
    J Syst Evol 2021, 59 (5): 1111-1123.  
    doi: 10.1111/jse.12758
    The Species Catalogue of China: Volume 1: Plants (SCCP) is a new, comprehensive, hardcopy inventory of Chinese higher plants that combines several datasets and references to recent taxonomic treatments. The database, with all attached additional information, is freely accessible via the internet (http://www.sp2000.org.cn/) and on CD-ROM, and will be updated yearly. It includes bryophytes (157 families, 599 genera, and 3167 specific and infraspecific taxa), lycophytes and ferns (41 families, 181 genera, and 2336 specific and infraspecific taxa), gymnosperms (10 families, 45 genera, and 311 specific and infraspecific taxa), and angiosperms (270 families, 3227 genera, and 35 873 specific and infraspecific taxa); in total 478 families, 4052 genera, and 41 687 specific and infraspecific taxa. Several other important statistics can also be drawn from the database, such as the distribution pattern of the four major groups of higher plants, as well as number of endemic and naturalized or cultivated genera/taxa. Entries in SCCP are also compared with Flora of China, and Flora reipublicae popularis Sinicae at the genus level. The SCCP will not only be a useful reference for floristic or biodiversity studies in China, but will also serve as a key resource to direct action and monitor progress. It is intended to be a useful resource for achieving Target 1 of the Global Strategy for Plant Conservation (GSPC).
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By   |   Supporting Information
      
    Evolutionary origin of species diversity on the Qinghai–Tibet Plateau
    Kang-Shan Mao, Yi Wang, and Jian-Quan Liu
    J Syst Evol 2021, 59 (6): 1142-1158.  
    doi: 10.1111/jse.12809
    The Qinghai–Tibet Plateau (QTP) sensu lato (sl) houses an exceptional species diversity in Asia. To develop a comprehensive understanding of species diversity in this fascinating region, we reviewed recent progress from biogeographic, paleogeographic, paleontological and genomic research of both plants and animals in the QTPsl. Numerous studies have been conducted to examine whether the QTPsl uplift triggered the production of rich species diversity there, whether a Quaternary “unified ice sheet” eliminated plants and animals on the central plateau and how high-altitude species developed the extreme environment adaptations. Major disputes arose about the first issue, mainly from different understanding of the QTP circumscriptions and related uplift, inaccurate dating of molecular phylogenetic trees, and non-causal correlations between uplift and species diversification. The QTPsl uplift is spatially and temporally heterogeneous, and abundant fossils reported recently similarly support such an asynchronous upheaval model across the entire region. Available phylogeographic studies of alpine plants and animals suggested their glacial refugia in the central QTPsl, rejecting a unified ice sheet during the Last Glacial Maximum. Genomic evidence from a limited number of alpine species has identified numerous candidate genes for high-altitude adaptation. In the future, more studies should be focused on speciation and adaptation mechanisms of the alpine species in the QTPsl based on the cutting-edge methods.
    Cited: Web of Science(21)
      
    Extensive Miocene speciation in and out of Indochina: The biogeographic history of Typhonium sensu stricto (Araceae) and its implication for the assembly of Indochina flora
    Shook Ling Low, Chih-Chieh Yu, Im Hin Ooi, Wichan Eiadthong, Alan Galloway, Zhe-Kun Zhou, and Yao-Wu Xing
    J Syst Evol 2021, 59 (3): 419-428.  
    doi: 10.1111/jse.12689
    The Asian paleotropical flora is characterized by abundance of endemic species, high biodiversity, and complex geological and climatic histories. However, the main driving mechanism underlying such high tropical biodiversity remains unclear. Hence, the present study aimed to investigate the biogeographic origin of the Asian paleotropical flora by tracking the speciation and diversification history of a typical tropical perennial, Typhonium sensu stricto (s.s.) (Araceae), using a time-calibrated whole-plastome phylogeny. In particular, we tested whether the Asian paleotropic region is a macroevolutionary source or sink. We observed that Typhonium s.s. originated in Indochina during the early–middle Miocene epoch, ca. 17.24 Ma (95% highest posterior density [HPD]: 12.83 ̶ 21.99 Ma). Most of the in situ diversification within the genus Typhonium s.s. has been underway since 14.73 Ma, with an accelerated lineage diversification at ca. 15−17 Ma, which may have been triggered by the intensification of the Asian monsoon system around the middle Miocene. Furthermore, the underground tuberous stem of Typhonium s.s. might have played an essential role in the adaptation to the seasonality caused by the monsoon in Indochina. Our results also suggested that peripatric speciation may be important in the diversification of T. trilobatum and T. roxburghii. This study provides a framework for studies in biogeography and evolution of the Asian paleotropical flora.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By   |   Supporting Information
      
    A worldwide phylogenetic classification of the Poaceae (Gramineae) III: An update
    Robert J. Soreng, Paul M. Peterson, Fernando O. Zuloaga, Konstantin Romaschenko, Lynn G. Clark, Jordan K. Teisher, Lynn J. Gillespie, Patricia Barberá, Cassiano A. D. Welker, Elizabeth A. Kellogg, De-Zhu Li, and Gerrit Davidse
    J Syst Evol 2022, 60 (3): 476-521.  
    doi: 10.1111/jse.12847

    We present an updated worldwide phylogenetic classification of Poaceae with 11 783 species in 12 subfamilies, 7 supertribes, 54 tribes, 5 super subtribes, 109 subtribes, and 789 accepted genera. The subfamilies (in descending order based on the number of species) are Pooideae with 4126 species in 219 genera, 15 tribes, and 34 subtribes; Panicoideae with 3325 species in 242 genera, 14 tribes, and 24 subtribes; Bambusoideae with 1698 species in 136 genera, 3 tribes, and 19 subtribes; Chloridoideae with 1603 species in 121 genera, 5 tribes, and 30 subtribes; Aristidoideae with 367 species in three genera and one tribe; Danthonioideae with 292 species in 19 genera and 1 tribe; Micrairoideae with 192 species in nine genera and three tribes; Oryzoideae with 117 species in 19 genera, 4 tribes, and 2 subtribes; Arundinoideae with 36 species in 14 genera and 3 tribes; Pharoideae with 12 species in three genera and one tribe; Puelioideae with 11 species in two genera and two tribes; and the Anomochlooideae with four species in two genera and two tribes. Two new tribes and 22 new or resurrected subtribes are recognized. Forty-five new (28) and resurrected (17) genera are accepted, and 24 previously accepted genera are placed in synonymy. We also provide an updated list of all accepted genera including common synonyms, genus authors, number of species in each accepted genus, and subfamily affiliation. We propose Locajonoa, a new name and rank with a new combination, L. coerulescens. The following seven new combinations are made in Lorenzochloa: L. bomanii, L. henrardiana, L. mucronata, L. obtusa, L. orurensis, L. rigidiseta, and L. venusta.

    Cited: Web of Science(20)
      
    A new classification of Cyperaceae (Poales) supported by phylogenomic data
    Isabel Larridon, Alexandre R. Zuntini, Étienne Léveillé-Bourret, Russell L. Barrett, Julian R. Starr, A. Muthama Muasya, Tamara Villaverde, Kenneth Bauters, Grace E. Brewer, Jeremy J. Bruhl, Suzana M. Costa, Tammy L. Elliott, Niroshini Epitawalage, Marcial Escudero, Isabel Fairlie, Paul Goetghebeur, Andrew L. Hipp, Pedro Jiménez-Mejías, Izai A.B. Sabino Kikuchi, Modesto Luceño, José Ignacio Márquez-Corro, Santiago Martín-Bravo, Olivier Maurin, Lisa Pokorny, Eric H. Roalson, Ilias Semmouri, David A. Simpson, Daniel Spalink, W. Wayt Thomas, Karen L. Wilson, Martin Xanthos, Félix Forest, and William J. Baker
    J Syst Evol 2021, 59 (4): 852-895.  
    doi: 10.1111/jse.12757
    Cyperaceae (sedges) are the third largest monocot family and are of considerable economic and ecological importance. Sedges represent an ideal model family to study evolutionary biology due to their species richness, global distribution, large discrepancies in lineage diversity, broad range of ecological preferences, and adaptations including multiple origins of C4 photosynthesis and holocentric chromosomes. Goetghebeur′s seminal work on Cyperaceae published in 1998 provided the most recent complete classification at tribal and generic level, based on a morphological study of Cyperaceae inflorescence, spikelet, flower, and embryo characters, plus anatomical and other information. Since then, several family-level molecular phylogenetic studies using Sanger sequence data have been published. Here, more than 20 years after the last comprehensive classification of the family, we present the first family-wide phylogenomic study of Cyperaceae based on targeted sequencing using the Angiosperms353 probe kit sampling 311 accessions. In addition, 62 accessions available from GenBank were mined for overlapping reads and included in the phylogenomic analyses. Informed by this backbone phylogeny, a new classification for the family at the tribal, subtribal, and generic levels is proposed. The majority of previously recognized suprageneric groups are supported, and for the first time, we establish support for tribe Cryptangieae as a clade including the genus Koyamaea. We provide a taxonomic treatment including identification keys and diagnoses for the 2 subfamilies, 24 tribes, and 10 subtribes, and basic information on the 95 genera. The classification includes five new subtribes in tribe Schoeneae: Anthelepidinae, Caustiinae, Gymnoschoeninae, Lepidospermatinae, and Oreobolinae.
    Cited: Web of Science(24)
      
    A framework infrageneric classification of Carex (Cyperaceae) and its organizing principles
    Global Carex Group, Eric H. Roalson, Pedro Jiménez-Mejías, Andrew L. Hipp, Carmen Benítez-Benítez, Leo P. Bruederle, Kyong-Sook Chung, Marcial Escudero, Bruce A. Ford, Kerry Ford, Sebastian Gebauer, Berit Gehrke, Marlene Hahn, Muhammad Qasim Hayat, Mathias H. Hoffmann, Xiao-Feng Jin, Sangtae Kim, Isabel Larridon, Étienne Léveillé-Bourret, Yi- Fei Lu, Modesto Luceño, Enrique Maguilla, Jose Ignacio Márquez-Corro, Santiago Martín-Bravo, Tomomi Masaki, Mónica Míguez, Robert F. C. Naczi, Anton A. Reznicek, Daniel Spalink, Julian R. Starr, Uzma, Tamara Villaverde, Marcia J. Waterway, Karen L. Wilson, and Shu-Ren Zhang
    J Syst Evol 2021, 59 (4): 726-762.  
    doi: 10.1111/jse.12722
    Phylogenetic studies of Carex L. (Cyperaceae) have consistently demonstrated that most subgenera and sections are para- or polyphyletic. Yet, taxonomists continue to use subgenera and sections in Carex classification. Why? The Global Carex Group (GCG) here takes the position that the historical and continued use of subgenera and sections serves to (i) organize our understanding of lineages in Carex, (ii) create an identification mechanism to break the ~2000 species of Carex into manageable groups and stimulate its study, and (iii) provide a framework to recognize morphologically diagnosable lineages within Carex. Unfortunately, the current understanding of phylogenetic relationships in Carex is not yet sufficient for a global reclassification of the genus within a Linnean infrageneric (sectional) framework. Rather than leaving Carex classification in its current state, which is misleading and confusing, we here take the intermediate steps of implementing the recently revised subgeneric classification and using a combination of informally named clades and formally named sections to reflect the current state of our knowledge. This hybrid classification framework is presented in an order corresponding to a linear arrangement of the clades on a ladderized phylogeny, largely based on the recent phylogenies published by the GCG. It organizes Carex into six subgenera, which are, in turn, subdivided into 62 formally named Linnean sections plus 49 informal groups. This framework will serve as a roadmap for research on Carex phylogeny, enabling further development of a complete reclassification by presenting relevant morphological and geographical information on clades where possible and standardizing the use of formal sectional names.
    Cited: Web of Science(32)
      
    A phylogenomic perspective on gene tree conflict and character evolution in Caprifoliaceae using target enrichment data, with Zabelioideae recognized as a new subfamily
    Hong-Xin Wang, Diego F. Morales-Briones, Michael J. Moore, Jun Wen, and Hua-Feng Wang
    J Syst Evol 2021, 59 (5): 897-914.  
    doi: 10.1111/jse.12745
    The use of diverse data sets in phylogenetic studies aiming for understanding evolutionary histories of species can yield conflicting inference. Phylogenetic conflicts observed in animal and plant systems have often been explained by hybridization, incomplete lineage sorting (ILS), or horizontal gene transfer. Here, we used target enrichment data, species tree, and species network approaches to infer the backbone phylogeny of the family Caprifoliaceae, while distinguishing among sources of incongruence. We used 713 nuclear loci and 46 complete plastome sequence data from 43 samples representing 38 species from all major clades to reconstruct the phylogeny of the family using concatenation and coalescence approaches. We found significant nuclear gene tree conflict as well as cytonuclear discordance. Additionally, coalescent simulations and phylogenetic species network analyses suggested putative ancient hybridization among subfamilies of Caprifoliaceae, which seems to be the main source of phylogenetic discordance. Ancestral state reconstruction of six morphological characters revealed some homoplasy for each character examined. By dating the branching events, we inferred the origin of Caprifoliaceae at approximately 66.65 Ma in the late Cretaceous. By integrating evidence from molecular phylogeny, divergence times, and morphology, we here recognize Zabelioideae as a new subfamily in Caprifoliaceae. This work shows the necessity of using a combination of multiple approaches to identify the sources of gene tree discordance. Our study also highlights the importance of using data from both nuclear and plastid genomes to reconstruct deep and shallow phylogenies of plants.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By   |   Supporting Information
    Cited: Web of Science(16)
      
    Herbarium phylogenomics: Resolving the generic status of the enigmatic Pseudobartsia (Orobanchaceae)
    Nan Jiang, Li-Na Dong, Jun-Bo Yang, Yun-Hong Tan, Hong Wang, Christopher P. Randle, De-Zhu Li, and Wen-Bin Yu
    J Syst Evol 2022, 60 (5): 1218-1228.  
    doi: 10.1111/jse.12829

    The millions of herbarium specimens in collections around the world provide historical resources for phylogenomics and evolutionary studies. Many rare and endangered species exist only as historical specimens. Here, we report a case study of the monotypic Pseudobartsia yunnanensis D. Y. Hong (=Pseudobartsia glandulosa[Bentham] W. B. Yu & D. Z. Li: Orobanchaceae) known from a single Chinese collection taken in 1940. We obtained genomic data of Pseudobartsia glandulosa using high-throughput short-read sequencing, and then assembled a complete chloroplast genome and nuclear ribosome DNA region in this study. We found that the newly assembled three plastid DNA regions (atpB-rbcL, rpl16, and trnS-G) and nuclear ribosomal internal transcribed spacer (nrITS) of Pseudobartsia glandulosa were more than 99.98% similar to published sequences obtained by target sequencing. Phylogenies of Orobanchaceae using 30 plastomes (including 10 new plastomes), using both supermatrix and multispecies coalescent approaches following a novel plastid phylogenomic workflow, recovered seven recognized tribes and two unranked groups, both of which were proposed as new tribes, that is, Brandisieae and Pterygielleae. Within Pterygielleae, all analyses strongly supported Xizangia D. Y. Hong as the first diverging genus, with Pseudobartsia D. Y. Hong as sister to Pterygiella Oliver + Phtheirospermum Bunge (excluding Phtheirospermum japonicum [Thunberg] Kanitz); this supports reinstatement of Pseudobartsia and Xizangia. Although elements of Buchnereae-Cymbarieae-Orobancheae and Brandisieae-Pterygielleae-Rhinantheae showed incongruence among gene trees, the topology of the supermatrix tree was congruent with the majority of gene trees and functional-group trees. Therefore, most plastid genes are evolving as a linkage group, allowing the supermatrix tree approach to yield internally consistent phylogenies for Orobanchaceae.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Genomic data reveal two distinct species from the widespread alpine ginger Roscoea tibetica Batalin (Zingiberaceae)
    Li Li, Jie Zhang, Zhi-Qiang Lu, Jian-Li Zhao, and Qing-Jun Li
    J Syst Evol 2021, 59 (6): 1232-1243.  
    doi: 10.1111/jse.12596
    Species delimitation is a key foundation for exploring biodiversity. However, the existence of continuous phenotypic variation in widespread species challenges accurate species delimitation based on classical taxonomy. In this study, we investigated the cryptic diversity of a widespread herb (Roscoea tibetica Batalin) in a biodiversity hotspot (the Hengduan Mountains, China) using genotyping by sequencing, examining morphological traits, developing species distribution models, and simulating demographic history. Phylogenomic reconstruction, principal component analysis, and genetic structure inferences indicated that previously reported R. tibetica comprised two monophyletic lineages with a deep divergence. Several morphological diagnostic characteristics were discovered from field and common garden that corresponded to these independent evolutionary lineages. Species distribution models illustrated significant ecological divergence between both lineages. All evidence strongly supported that R. tibetica, as described in previous taxonomy, actually comprises two distinct species. Model test of gene flow and effective population size changes in fastsimcoal2, and a negative Tajima's D-value suggested that recent contact likely occurred between the two lineages. Our results proposed that cryptic diversity in previously reported R. tibetica was possibly associated with phenotypic plasticity in heterogeneous environments and morphological convergence in similar habitats. This study suggests that caution should be exercised when attempting to gain biological insight into species with large-scale morphological variation, and species delimitation should be done in advance.
      
    Integrating coalescent-based species delimitation with ecological niche modeling delimited two species within the Stewartia sinensis complex (Theaceae)
    Han-Yang Lin, Kai-Jie Gu, Wen-Hao Li, and Yun-Peng Zhao
    J Syst Evol 2022, 60 (5): 1037-1048.  
    doi: 10.1111/jse.12732

    Accurate species delimitation is the key to precise estimation of species diversity and is fundamental to most branches of biology. Unclear species boundaries within species complexes could lead to the underestimation of species diversity. However, species delimitation of species complexes remains challenging due to the continuum of phenotypic variations. To robustly examine species boundaries within a species complex, integrative approaches in phylogeny, ecology, and morphology were applied to the Stewartia sinensis complex (Theaceae) endemic to China. Multispecies coalescent-based species delimitation using 572 nuclear ortholog sequences (anchored enrichment) supported reciprocal phylogenetic monophyly of the northern lineage (NL) and southern lineage (SL), which were not sister clades. Niche equivalency and similarity tests demonstrated significant climatic niche differentiation between NL and SL with observed Warren et al.'s I = 0.0073 and Schoener's D = 0.0021. Species distribution modeling also separated their potential distribution. Morphometric analyses suggested significant interlineage differentiation of multiple traits including the ratio of length and width, leaf width, and pedicel length, although overall similarity did not differ. Based on the integrative species concept, two distinct species were proposed with legitimate names of Stewartia gemmata for SL and S. sinensis for NL. Our empirical study of the S. sinensis complex highlights the importance of applying multiple species criteria, in particular the underappreciated niche differentiation, to species delimitation in species complexes pervasive in plants.

    References   |   Full Text HTML   |   Full Text PDF   |   Cited By
      
    Out of the Pan-Himalaya: Evolutionary history of the Paeoniaceae revealed by phylogenomics
    Shi-Liang Zhou, Chao Xu, Jing Liu, Yan Yu, Ping Wu, Tao Cheng, and De-Yuan Hong
    J Syst Evol 2021, 59 (6): 1170-1182.  
    doi: 10.1111/jse.12688
    Peonies (the Paeoniaceae, Paeonia L.) are famous garden flowers, medicinal plants, and edible oil crops, but their evolutionary history largely remains unknown. To probe into their phylogenetic relationships, evolutionary history, formation of present distribution pattern, and origins of tetraploids, we sequenced 25 fragments belonging to 20 single copy nuclear genes and 14 chloroplast regions of all species in the genus to reconstruct phylogenetic relationships, date the divergence times of lineages, infer the ancestral biogeographical regions, and document the parents of tetraploids. Our results show that Paeoniaceae separated from the other members in Saxifragales in the Campanian of the late Cretaceous and diverged into two clades, woody and herbaceous clades, in the late Oligocene or early Miocene. They survived and early diverged in the Pan-Himalaya where they migrated eastwards to East Asia and further to NW America, and northwards to Middle Asia, and further to Europe. The woody lineage differentiated into two sublineages with accelerated root or floral disk evolution, while the herbaceous lineage diverged into five sublineages. Multiple glacial and interglacial cycles in Europe in the late Pliocene and early Pleistocene created opportunities for the peony species to meet and hybridize in the Mediterranean refugia, giving rise to eight allotetraploid species and four infraspecific tetraploids. Paeonia daurica Andrews, P. obovata Maxim., and P. tenuifolia L. served as the most important parents. The phylogeny of Paeonia L. implies that a new taxonomic system with two subgenera and seven sections should be proposed.
      
    Congruent spatial patterns of species richness and phylogenetic diversity in karst flora: Case study of Primulina (Gesneriaceae)
    Mei-Zhen Xu, Li- Hua Yang, Hang-Hui Kong, Fang Wen, and Ming Kang
    J Syst Evol 2021, 59 (2): 251-261.  
    doi: 10.1111/jse.12558
    The karst landform in southern China is renowned for its high levels of species diversity and endemism. Globally, karst ecosystems are under threat from unsustainable anthropogenic disturbance and climate changes and are among the most threatened ecosystems worldwide. In this study, we used the typical karst endemic genus in southern China, Primulina Hance, as a model to identify areas within the karst landform with high diversity and to investigate congruence between phylogenetic and species‐based measures of diversity. Using phylogenetic information and species distribution data, we measured geographical patterns of diversity with four metrics: species richness (SR), corrected weighted endemism (CWE), phylogenetic diversity (PD), and phylogenetic endemism (PE). Our results revealed a high spatial congruence among SR, PD, and PE, with hotspot areas identified in the Nanling Mountains (i.e., north Guangdong and northeast Guangxi) and southeast Yungui Plateau (i.e., north and southwest Guangxi), whereas the hotspots of CWE are comparatively uniform throughout the geographic extent. The categorical analysis of neo‐ and paleoendemism identified a pattern of mixed neo‐ and paleoendemism in numerous grid cells, suggesting that karst areas in southern China have acted as both “museums” and “cradles” of plant evolution. Conservation gap analysis of hotspots revealed that the majority of prioritized hotspots (>90%) of the genus are outside of protected areas, therefore indicating the limited effectiveness of national nature reserves for the karst flora. Overall, our results suggest that the karst flora merits more conservation attention and SR can be an effective surrogate to capture PD in conservation planning.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By   |   Supporting Information
      
    Revisiting of Carex sect. Confertiflorae s.l. (Cyperaceae): New data from molecular and morphological evidence and first insights on Carex biogeography in East Asia
    Yi-Fei Lu, Xiao-Feng Jin, Hiroshi Ikeda, Okihito Yano, Carmen Benítez-Benítez, Wei-Jie Chen, Yong-Di Liu, Pedro Jiménez-Mejías, and Ming-Jian Yu
    J Syst Evol 2021, 59 (4): 668-686.  
    doi: 10.1111/jse.12795
    Carex sect. Confertiflorae s.l. is a medium-sized species group (ca. 40 species) with its center of diversity in E Asia (China and Japan). According to morphological traits, the section has been proposed to split into two sections (sects. Confertiflorae sensu Ohwi and Molliculae Ohwi) up to five different ones (sects. Confertiflorae s.s., Molliculae, Dispalatae Ohwi, Ischnostachyae Ohwi, and Alliiformes Akiyama). Recent phylogenetic reconstructions showed Confertiflorae s.l. not to be monophyletic, as species traditionally considered part of it were found to belong to other clades, whereas species traditionally ascribed to other sections were nested within it. In this study, we investigated the phylogenetic structure, morphological affinities, and biogeographic history of sect. Confertiflorae s.l. We employed a taxon-based approach to explore the morphological affinities of the species considered in sect. Confertiflorae and compared the micromorphology of the nutlets of almost all the taxa using SEM. We included 40 samples representing 31 species/subspecies of sect. Confertiflorae s.l. and used two nuclear (ETS and ITS) and three plastid (trnL-F, matK, and rpl32-trnL UAG) molecular markers to reconstruct the phylogeny of the group. The phylogenetic analyses confirmed the polyphyly of sect. Confertiflorae s.l., whose representatives were found within five distinct clades. From these, two clades, sect. Confertiflorae and sect. Molliculae, were found to be closely related and contained the majority of the species. The composition of the two clades agreed with the morphological structure of the group, and we confirmed an exclusive combination of features (namely color of basal sheaths, presence of bract sheath, peduncle of lowest spike, inflorescence sex distribution, shape of pistillate glume apex, and color and veins of utricle, among others) characterizing each of the two clades. The origin of the two clades was found to be in the early Pliocene; however, the majority of the diversification events within each clade took place during the Pleistocene. This illustrates that although Asia has been regarded as having little potential ecological space for Carex to diversify due to its climate stability, groups of sedges sub-endemic from that area may have a fairly recent origin related to glaciations. We proposed the rearrangement of sect. Confertiflorae as previously conceived as three independent sections: the monotypic Alliiformes, sect. Molliculae, and sect. Paludosae.
      
    Plastid and nuclear phylogenomic incongruences and biogeographic implications of Magnolia s.l. (Magnoliaceae)
    Shan-Shan Dong, Ya-Ling Wang, Nian-He Xia, Yang Liu, Min Liu, Lian Lian, Na Li, Ling-Fei Li, Xiao-An Lang, Yi-Qing Gong, Lu Chen, Ernest Wu, and Shou-Zhou Zhang
    J Syst Evol 2022, 60 (1): 1-15.  
    doi: 10.1111/jse.12727
    Magnoliaceae, an assemblage of early diverged angiosperms, comprises two subfamilies, speciose Magnolioideae with approximately 300 species in varying numbers of genera and monogeneric Liriodendroideae with two species in Liriodendron L. This family occupies a pivotal phylogenetic position with important insights into the diversification of early angiosperms, and shows intercontinentally disjunct distribution patterns between eastern Asia and the Americas. Widespread morphological homogeneity and slow substitution rates in Magnolia L. s.l. resulted in poorly supported phylogenetic relationships based on morphology or molecular evidence, which hampers our understanding of the genus’ temporal and spacial evolution. Here, based on the newly generated genome skimming data for 48 Magnolia s.l. species, we produced robust Magnolia phylogenies using genome-wide markers from both plastid genomes and single nucleotide polymorphism data. Contrasting the plastid and nuclear phylogenies revealed extensive cytonuclear conflicts in both shallow and deep relationships. ABBA-BABA and PhyloNet analyses suggested hybridization occurred within sect. Yulania, and sect. Magnolia, which is in concordance with the ploidy level of the species in these two sections. Divergence time estimates and biogeographic reconstruction indicated that the timing of the three tropical Magnolia disjunctions coincided with the mid-Eocene cooling climate and/or late Eocene climate deterioration, and two temperate disjunctions occurred much later, possibly during the warm periods of the Miocene, hence supporting the boreotropical flora concept of Magnolia s.l.
    References   |   Full Text HTML   |   Full Text PDF   |   Cited By   |   Supporting Information
    Cited: Web of Science(10)
      
    Phylogeny and biogeography of the hollies (Ilex L., Aquifoliaceae)
    Xin Yao, Yu Song, Jun-Bo Yang, Yun-Hong Tan, and Richard T. Corlett
    J Syst Evol 2021, 59 (1): 73-82.  
    doi: 10.1111/jse.12567
    The holly genus, Ilex L., in the monogeneric Aquifoliaceae, is the largest woody dioecious genus (>664 spp.), with a near‐cosmopolitan distribution in mesic environments. We constructed a phylogeny based on two nuclear genes, representing 177 species spread across the geographical range, and dated using macrofossil records. The five main clades had a common ancestor in the early Eocene, much earlier than previously suggested. Ilex originated in subtropical Asia and extant clades colonized South America by 30 Ma, North America by 23 Ma, Australia by 8 Ma, Europe by 6 Ma, and Africa by 4 Ma. South and North America were colonized multiple times. Ilex also reached Hawaii (10 Ma) and other oceanic islands. Macrofossil and pollen records show the genus has tracked mesic climates through time and space, and had a wider distribution before late Miocene global cooling. Our phylogeny provides a framework for studies in comparative ecology and evolution.
    Cited: Web of Science(20)