Table of Contents
  • Volume 47 Issue 5

    Special issue: Intercontinental and Intracontinental Biogeography:Patterns and Methods

    Cover illustration: Left, intracontinental disjunction in Nolana in the Atacama and Peruvian deserts (Dillon et al., this issue); upper right, hypothesized intercontinental and intracontinental dispersal routes in Ephedra (Ickert-Bond et al., this issue); lower middle, leaf fossil of Aesculus hickeyi S. R. Manchester with five leaflets from the Paleocene of North Dakota, courtesy of Steven R. Manchester; lower right, probabilities of ancestral ranges inferred for sect [Detail] ...
      
      Editorial
    • Jun WEN, Qiu-Yun (Jenny) XIANG, Hong QIAN, Jianhua LI, Xiao-Quan WANG, Stefanie M. ICKERT-BOND
      2009, 47 (5): 327–330
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
    • Reviews & Research Articles
    • Jun WEN, Stefanie M. ICKERT-BOND
      2009, 47 (5): 331–348
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      The present paper reviews advances in the study of two major intercontinental disjunct biogeographic patterns: (i) between Eurasian and western North American deserts with the Mediterranean climate (the Madrean–Tethyan disjunctions); and (ii) between the temperate regions of North and South America (the amphitropical disjunctions). Both disjunct patterns have multiple times of origin. The amphitropical disjunctions have largely resulted from long-distance dispersal, primarily from the Miocene to the Holocene, with available data indicating that most lineages dispersed from North to South America. Results of recent studies on the Mediterranean disjuncts between the deserts of Eurasia and western North America support the multiple modes of origin and are mostly consistent with hypotheses of long-distance dispersal and the North Atlantic migration. Axelrod's Madrean–Tethyan hypothesis, which implies vicariance between the two regions in the early Tertiary, has been favored by a few studies. The Beringian migration corridor for semiarid taxa is also supported in some cases.
    • A.J. HARRIS, Qiu-Yun (Jenny) XIANG
      2009, 47 (5): 349–368
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      We propose a simple statistical approach for using Dispersal–Vicariance Analysis (DIVA) software to infer biogeographic histories without fully bifurcating trees. In this approach, ancestral ranges are first optimized for a sample of Bayesian trees. The probability P of an ancestral range r at a node is then calculated as $P(r_\gamma)=\sum^{n}_{t=1} F(r_\gamma)_{t}Pt$ where Y is a node, and F(rY) is the frequency of range r among all the optimal solutions resulting from DIVA optimization at node Y, t is one of n topologies optimized, and Pt is the probability of topology t. Node Y is a hypothesized ancestor shared by a specific crown lineage and the sister of that lineage "x", where x may vary due to phylogenetic uncertainty (polytomies and nodes with posterior probability <100%). Using this method, the ancestral distribution at Y can be estimated to provide inference of the geographic origins of the specific crown group of interest. This approach takes into account phylogenetic uncertainty as well as uncertainty from DIVA optimization. It is an extension of the previously described method called Bayes-DIVA, which pairs Bayesian phylogenetic analysis with biogeographic analysis using DIVA. Further, we show that the probability P of an ancestral range at Y calculated using this method does not equate to pp*F(rY) on the Bayesian consensus tree when both variables are <100%, where pp is the posterior probability and F(rY) is the frequency of range r for the node containing the specific crown group. We tested our DIVA-Bayes approach using Aesculus L., which has major lineages unresolved as a polytomy. We inferred the most probable geographic origins of the five traditional sections of Aesculus and of Aesculus californica Nutt. and examined range subdivisions at parental nodes of these lineages. Additionally, we used the DIVA-Bayes data from Aesculus to quantify the effects on biogeographic inference of including two wildcard fossil taxa in phylogenetic analysis. Our analysis resolved the geographic ranges of the parental nodes of the lineages of Aesculus with moderate to high probabilities. The probabilities were greater than those estimated using the simple calculation of pp*F(ry) at a statistically significant level for two of the six lineages. We also found that adding fossil wildcard taxa in phylogenetic analysis generally increased P for ancestral ranges including the fossil's distribution area. The ΔP was more dramatic for ranges that include the area of a wildcard fossil with a distribution area underrepresented among extant taxa. This indicates the importance of including fossils in biogeographic analysis. Exmination of range subdivision at the parental nodes revealed potential range evolution (extinction and dispersal events) along the stems of A. californica and sect. Parryana.
    • Kristin S. LAMM, Benjamin D. REDELINGS
      2009, 47 (5): 369–382
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save

      Recent years have witnessed a proliferation of quantitative methods for biogeographic inference. In particular, novel parametric approaches represent exciting new opportunities for the study of range evolution. Here, we review a selection of current methods for biogeographic analysis and discuss their respective properties. These methods include generalized parsimony approaches, weighted ancestral area analysis, dispersal–vicariance analysis, the dispersal–extinction–cladogenesis model and other maximum likelihood approaches, and Bayesian stochastic mapping of ancestral ranges, including a novel approach to inferring range evolution in the context of island biogeography. Some of these methods were developed specifically for problems of ancestral range reconstruction, whereas others were designed for more general problems of character state reconstruction and subsequently applied to the study of ancestral ranges. Methods for reconstructing ancestral history on a phylogenetic tree differ not only in the types of ancestral range states that are allowed, but also in the various historical events that may change the ancestral ranges. We explore how the form of allowed ancestral ranges and allowed transitions can both affect the outcome of ancestral range estimation. Finally, we mention some promising avenues for future work in the development of model-based approaches to biogeographic analysis.

    • Richard I. MILNE
      2009, 47 (5): 383–401
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      A universal method of molecular dating that can be applied to all families and genera regardless of their fossil records, or lack thereof, is highly desirable. A possible method for eudicots is to use a large phylogeny calibrated using deep fossils including tricolpate pollen as a fixed (124 mya) calibration point. This method was used to calculate node ages within three species-poor disjunct basal eudicot genera, Caulophyllum, Podophyllum and Pachysandra, and sensitivity of these ages to effects such as taxon sampling were then quantified. By deleting from one to three accessions related to each genus in 112 different combinations, a confidence range describing variation due only to taxon sampling was generated. Ranges for Caulophyllum, Podophyllum and Pachysandra were 8.4–10.6, 7.6–20.0, and 17.6–25.0 mya, respectively. However, the confidence ranges calculated using bootstrapping were much wider, at 3–19, 0–32 and 11–32 mya, respectively. Furthermore, deleting 10 adjacent taxa had a large effect in Pachysandra only, indicating that undersampling effects are significant among Buxales. Changes to sampling density in neighboring clades, or to the position of the fixed fossil calibration point had small to negligible effects. Non-parametric rate smoothing was more sensitive to taxon sampling effects than was penalized likelihood. The wide range for Podophyllum, compared to the other two genera, was probably due to a high degree of rate heterogeneity within this genus. Confidence ranges calculated by this method could be narrowed by sampling more individuals within the genus of interest, and by sequencing multiple DNA regions from all species in the phylogeny.
    • Ji-Pei YUE, Hang SUN, David A. BAUM,Jian-Hua LI, Ihsan A. AL-SHEHBAZ, Richard REE
      2009, 47 (5): 402–415
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save

      The Hengduan Mountains region of south-west China is a noted biodiversity hotspot, but the geographic origins and historical assembly of its rich endemic flora, including the sky-island species of Solms-laubachia Muschl. (Brassicaceae), have been little studied. Previous molecular studies on the phylogeny of Solms-laubachia showed it to be paraphyletic, leading to considerable expansion not only of its taxonomic limits, but also its geographic range, with the inclusion of taxa from outside the Hengduan region. However, these studies provided little resolution of interspecific relationships, preventing inferences about historical biogeography within the clade. In this study, new sequence data from two nuclear genes (LEAFY and G3pdh) and two chloroplast intergenic spacers (petN-psbM and psbM-trnD) were combined with existing markers to increase phylogenetic signal. Phaeonychium villosum (Maxim.) Al-Shehbaz was found to be nested within Solms-laubachia s.l. In general, phylogenetic relationships appear to be a good predictor of geography, with the Hengduan Mountain endemics embedded in a paraphyletic grade of species from the western Himalayas and central Asia, but also imply morphological homoplasy. Incongruence was detected between the nuclear and chloroplast gene trees, perhaps resulting from incomplete lineage sorting of ancestral polymorphisms. The crown age of Solms-laubachia s.l. was estimated to be around 1.42–3.68 million years ago, using Bayesian relaxed molecular clock analysis. Historical biogeographic analysis using a parametric dispersal-extinction-cladogenesis model inferred central Asia and the western Himalayas as most probable ancestral range of Solms-laubachia s.l., and estimated higher rates of eastward expansion than westward during the diversification of descendant lineages. In sum, our results suggest that Solms-laubachia s.l. originated during the Pliocene in central Asia, and subsequently migrated eastward into the Hengduan Mountains, colonizing sky-island, alpine scree-slope habitats that may have provided novel ecological opportunity and accelerated speciation, ultimately establishing this region as the present center of diversity of the genus.

    • Ze-Long NIE, Hang SUN, Ying MENG, , Jun WEN
      2009, 47 (5): 416–430
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      Toxicodendron is a genus in the Rhus complex of Anacardiaceae with a disjunct distribution between eastern Asia and North America, extending to southeastern Asia and the neotropics. Nuclear (internal transcribed spacer, external transcribed spacer, and NIA-i3) and chloroplast (ndhF and trnL-F) sequences were used to construct phylogenetic relationships of Toxicodendron. Phylogenetic analysis of these data strongly support Toxicodendron as a monophyletic group distinct from other genera of the Rhus complex, and the phylogeny does not fully corroborate classification at the sectional level. Two temperate disjunct lineages were detected, one from section Toxicodendron and the other between the eastern North American Toxicodendron vernix and the eastern Asian Toxicodendron vernicifluum. Their divergence times were estimated to be 13.46 (7.95–19.42) and 7.53 (2.76–12.86) mya, respectively. The disjunction between section Griffithii (taxa from warm temperate to tropical Asia) and Toxicodendron striatum (from the neotropics) was supported and their divergence time was estimated to be 20.84 (11.16–30.52) mya in the early Miocene. Our biogeographic results and the paleontological data support the Bering land bridge as the most likely route to explain the temperate disjunctions, yet the tropical disjunction in Toxicodendron seems to be best explained by the North Atlantic land bridge hypothesis.
    • Beryl B. SIMPSON,Mary T. K. ARROYO,Sandra SIPE,Marta DIAS de MORAES, Joshua McDILL
      2009, 47 (5): 431–443
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      A molecular phylogenetic analysis of the majority of the species of Perezia reveals that, as traditionally defined, the genus is not monophyletic with two (one) species more closely related to Nassauvia than to Perezia. In addition, our results show that Burkartia (Perezia) lanigera is related to Acourtia and is the only member of that clade in South America. The remaining species are monophyletic and show a pattern of an early split between a western temperate and an eastern subtropical clade of species. Within the western clade, the phylogeny indicates a pattern of diversification that proceeded from southern, comparatively low elevation habitats to southern high elevation habitats, and ultimately into more northern high elevation habitats. The most derived clades are found in the high central Andes where significant radiation has occurred.
    • Stefanie M. ICKERT-BOND, Catarina RYDIN, Susanne S. RENNER
      2009, 47 (5): 444–456
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      Ephedra comprises approximately 50 species, which are roughly equally distributed between the Old and New World deserts, but not in the intervening regions (amphitropical range). Great heterogeneity in the substitution rates of Gnetales (Ephedra, Gnetum, and Welwitschia) has made it difficult to infer the ages of the major divergence events in Ephedra, such as the timing of the Beringian disjunction in the genus and the entry into South America. Here, we use data from as many Gnetales species and genes as available from GenBank and from a recent study to investigate the timing of the major divergence events. Because of the tradeoff between the amount of missing data and taxon/gene sampling, we reduced the initial matrix of 265 accessions and 12 loci to 95 accessions and 10 loci, and further to 42 species (and 7736 aligned nucleotides) to achieve stationary distributions in the Bayesian molecular clock runs. Results from a relaxed clock with an uncorrelated rates model and fossil-based calibration reveal that New World species are monophyletic and diverged from their mostly Asian sister clade some 30 mya, fitting with many other Beringian disjunctions. The split between the single North American and the single South American clade occurred approximately 25 mya, well before the closure of the Panamanian Isthmus. Overall, the biogeographic history of Ephedra appears dominated by long-distance dispersal, but finer-scale studies are needed to test this hypothesis.
    • Michael O. DILLON, Tieyao TU, Lei XIE, Victor QUIPUSCOA SILVESTRE, Jun WEN
      2009, 47 (5): 457–476
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      The present paper reconstructs the biogeographic diversification for Nolana L.f. (Solanaceae), a genus of 89 endemic species largely restricted to fog-dependent desert lomas formations of coastal Peru and Chile. Previous efforts have reconstructed a phylogenetic estimate for Nolana using a combination of molecular markers. Herein, we expand on those results to examine hypotheses of biogeographic origins and diversification patterns. Nolana occupies habitats within a continuous coastal desert and forms a terrestrial archipelago of discrete "islands" unique in size, topography, and species composition. Each locality contains at least one Nolana species and many contain multiple species in sympatry. The genus has a Chilean origin, with the basal clades confined to Chile with wide geographic and ecological distributions. Peru contains two strongly supported clades, suggesting two introductions with subsequent radiation. A Chilean clade of shrubby, small-flowered species appears to have had its origins from the same ancestors of the second line that radiated in Peru and northern Chile. Nolana galapagensis is endemic to the Islas Galápagos, with origins traced to Peruvian taxa with a divergence time of 0.35 mya. Rates of diversification over the past 4.02 mya in Nolana, in one of the driest habitats on Earth, suggest rapid adaptive radiation in several clades. Success in Nolana may be attributed to characters that confer a competitive advantage in unpredictable and water-dependent environments, such as succulent leaf anatomy and ecophysiology, and the reproductive mericarp unique to Nolana. The processes affecting or shaping the biota of western South America are discussed.
    • Pedro FIASCHI, José R. PIRANI
      2009, 47 (5): 477–496
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      Molecular phylogenetic studies have become a major area of interest in plant systematics, and their impacts on historical biogeographic hypotheses are not to be disregarded. In Brazil, most historical biogeographic studies have relied on animal phylogenies, whereas plant biogeographic studies have largely lacked a phylogenetic component, having a limited utility for historical biogeography. That country, however, is of great importance for most biogeographic studies of lowland tropical South America, and it includes areas from a number of biogeographic regions of the continent. Important biogeographic reports have been published as part of phylogenetic studies, taxonomic monographs, and regional accounts for small areas or phytogeographic domains, but the available information is subsequently scattered and sometimes hard to find. In this paper we review some relevant angiosperm biogeographic studies in Brazil. Initially we briefly discuss the importance of other continents as source areas for the South American flora. Then we present a subdivision of Brazil into phytogeographic domains, and we cite studies that have explored the detection of biogeographic units (areas of endemism) and how they are historically related among those domains. Examples of plant taxa that could be used to test some biogeographic hypotheses are provided throughout, as well as taxa that exemplify several patterns of endemism and disjunction in the Brazilian angiosperm flora.
    • Jochen HEINRICHS, örn HENTSCHEL, Kathrin FELDBERG, Andrea BOMBOSCH, Harald SCHNEIDER
      2009, 47 (5): 497–508
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      More than 200 research papers on the molecular phylogeny and phylogenetic biogeography of bryophytes have been published since the beginning of this millenium. These papers corroborated assumptions of a complex genetic structure of morphologically circumscribed bryophytes, and raised reservations against many morphologically justified species concepts, especially within the mosses. However, many molecular studies allowed for corrections and modifications of morphological classification schemes. Several studies reported that the phylogenetic structure of disjunctly distributed bryophyte species reflects their geographical ranges rather than morphological disparities. Molecular data led to new appraisals of distribution ranges and allowed for the reconstruction of refugia and migration routes. Intercontinental ranges of bryophytes are often caused by dispersal rather than geographical vicariance. Many distribution patterns of disjunct bryophytes are likely formed by processes such as short distance dispersal, rare long distance dispersal events, extinction, recolonization and diversification.
    • Hong QIAN
      2009, 47 (5): 509–514
      Abstract   |   References   |   Full Text HTML   |   Full Text PDF   |   Save
      Beta diversity is the change in species composition among areas in a geographic region. The proportion of species shared between two areas often decreases when the distance separating them increases, leading to an increase in beta diversity. This study compares beta diversity among four classes of terrestrial vertebrates (mammals, birds, reptiles, and amphibians) at both regional (biogeographic realm) and global extents, using the same sets of faunal sample units for all four groups in each comparison. Beta diversity is lower for the two endothermic taxa (birds and mammals) than for the two ectothermic taxa (reptiles and amphibians) in all six biogeographic realms examined. When the four taxa in the six biogeographic realms are combined, beta diversity at the species rank is higher than that of the genus rank by a factor of 1.24, and is higher than that of the family rank by a factor of 1.85. The ratio of beta diversity at the genus rank to that at the family rank is 1.50. Beta diversity is slightly higher for ecoregions of 5000–99,999 km2 than for ecoregions of 100,000–5,000,000 km2.
Editors-in-Chief
Song Ge
Jun Wen
Impact Factor
3.7
JCR 2022 IF ranking: 60/238 (Plant Sciences, top 25%, Q2 quartile)
Journal Abbreviation: J Syst Evol
ISSN: 1674-4918 (Print)
1759-6831 (Online)
CN: 11-5779/Q
Frequency: Bi-monthly

Sponsors

Publisher

Co-Sponsor

Scan to view the journal on your mobile
device
Scan to follow us on WeChat