J Syst Evol ›› 2016, Vol. 54 ›› Issue (4): 453-467.doi: 10.1111/jse.12196

• Research Articles • Previous Articles    

Phylogeny and diversification of Chinese Araliaceae based on nuclear and plastid DNA sequence data

Rong Li1 and Jun Wen2*   

  1. 1Key Laboratory for Plant Diversity and Biogeography of East Asia, Kunming Institute of Botany, Chinese Academy of Sciences, Kunming 650201, China
    2Department of Botany, National Museum of Natural History, Smithsonian Institution, Washington, DC 20013-7012, USA
  • Received:2015-11-10 Online:2016-01-29 Published:2016-07-25

Abstract: Chinese Araliaceae consist of 20 genera and ca. 175 species. To assess the evolutionary relationships of Araliaceae and their biogeographic diversification in China, the phylogeny of Chinese Araliaceae was constructed by sampling 96 accessions representing 20 genera and 50 species of Chinese Araliaceae and 45 closely related taxa using sequences of the nuclear ribosomal internal transcribed spacer (ITS) region and six plastid regions (the ndhF gene, the trnL-trnF region, the rps16intron, the atpB-rbcL intergenic spacer, the rpl16 intron, and the psbA-trnH intergenic spacer). Phylogenetic analyses of the combined plastid and ITS data supported the results of the previously studies that the Chinese members of Araliaceae were scattered within the Asian Palmate group and the Aralia-Panax group withOsmoxylon at the base of core Araliaceae. The generic status of Pentapanax and Tupidanthus is not supported. Our analysis clearly places them in Aralia and AsianSchefflera, respectively. In a broader phylogenetic framework of Araliaceae, based on the fossil-calibrated Bayesian dating, Chinese Araliaceae was inferred to have originated in Asia and underwent a rapid radiation in its evolutionary history. Its diversification is hypothesized to have been driven largely by the orogenies in Asia during the Cenozoic. In China, the distribution pattern of the phylogenetic diversity of Araliaceae corresponds with its taxonomic diversity across the entire region.

Key words: Aralia-Panax group, Asian Palmate group, Chinese Araliaceae, diversification, phylogeny

[1] Bing Liu, Yun-Hong Tan, Su Liu, Richard G. Olmstead, Dao-Zhang Min, Zhi-Duan Chen, Nirmal Joshee, Brajesh N. Vaidya, Richard C. K. Chung, and Bo Li. Phylogenetic relationships of Cyrtandromoea and Wightia revisited: A new tribe in Phrymaceae and a new family in Lamiales . J Syst Evol, 2020, 58(1): 1-17.
[2] Xu Zhang, Hua-Jie Zhang, Jacob B. Landis, Tao Deng, Ai-Ping Meng, Hang Sun, Yan-Song Peng, Heng-Chang Wang, and Yan-Xia Sun. Plastome phylogenomic analysis of Torreya (Taxaceae) . J Syst Evol, 2019, 57(6): 607-615.
[3] Ana Otero, Pedro Jiménez-Mejías, Virginia Valcárcel, and Pablo Vargas. Worldwide long‐distance dispersal favored by epizoochorous traits in the biogeographic history of Omphalodeae (Boraginaceae) . J Syst Evol, 2019, 57(6): 579-593.
[4] Jianhua Li, Mark Stukel, Parker Bussies, Kaleb Skinner, Alan R. Lemmon, Emily Moriarty Lemmon, Kenneth Brown, Airat Bekmetjev, and Nathan G. Swenson. Maple phylogeny and biogeography inferred from phylogenomic data . J Syst Evol, 2019, 57(6): 594-606.
[5] Santiago Martín‐Bravo, Pedro Jiménez‐Mejías, Tamara Villaverde, Marcial Escudero, Marlene Hahn, Daniel Spalink, Eric H. Roalson, Andrew L. Hipp, and the Global Carex Group (Carmen Benítez-Benítez, Leo P. Bruederle, Elisabeth Fitzek, Bruce A. Ford, Kerry A. Ford, Mira Garner, Sebastian Gebauer, Matthias H. Hoffmann, Xiao-Feng Jin, Isabel Larridon, Étienne Léveillé-Bourret, Yi-Fei Lu, Modesto Luceño, Enrique Maguilla, Jose Ignacio Márquez‐Corro, Mónica Míguez, Robert Naczi, Anton A. Reznicek, and Julian R. Starr). A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification . J Syst Evol, 2019, 57(6): 695-718.
[6] Shu-Li Wang, Lang Li, Xiu-Qin Ci, John G. Conran, and Jie Li. Taxonomic status and distribution of Mirabilis himalaica (Nyctaginaceae) . J Syst Evol, 2019, 57(5): 431-439.
[7] Santiago Andrés-Sánchez, G. Anthony Verboom, Mercè Galbany-Casals, and Nicola G. Bergh. Evolutionary history of the arid climate‐adapted Helichrysum (Asteraceae: Gnaphalieae): Cape origin and association between annual life‐history and low chromosome numbers . J Syst Evol, 2019, 57(5): 468-487.
[8] Qiu-Jie Zhou, Che-Wei Lin, Jin-Hong Dai, Ren-Chao Zhou, and Ying Liu. Exploring the generic delimitation of Phyllagathis and Bredia (Melastomataceae): A combined nuclear and chloroplast DNA analysis . J Syst Evol, 2019, 57(3): 256-267.
[9] Hyoung Tae Kim, Jung Sung Kim, You Mi Lee, Jeong-Hwan Mun, and Joo-Hwan Kim. Molecular markers for phylogenetic applications derived from comparative plastome analysis of Prunus species . J Syst Evol, 2019, 57(1): 15-22.
[10] Wu-Qin Xu, Jocelyn Losh, Chuan Chen, Pan Li, Rui-Hong Wang, Yun-Peng Zhao, Ying-Xiong Qiu, Cheng-Xin Fu. Comparative genomics of figworts (Scrophularia, Scrophulariaceae), with implications for the evolution of Scrophularia and Lamiales . J Syst Evol, 2019, 57(1): 55-65.
[11] Joseph T. Miler, Garry Jolley-Rogers, Brent D. Mishler, and Andrew H. Thornhill. Phylogenetic diversity is a better measure of biodiversity than taxon counting . J Syst Evol, 2018, 56(6): 663-667.
[12] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[13] David J. Hearn, Margaret Evans, Ben Wolf, Michael McGinty, Jun Wen. Dispersal is associated with morphological innovation, but not increased diversification, in Cyphostemma (Vitaceae) . J Syst Evol, 2018, 56(4): 340-359.
[14] Sadaf Habib, Viet-Cuong Dang, Stefanie M. Ickert-Bond, Jun Wen, Zhi-Duan Chen, Li-Min Lu. Evolutionary trends in Tetrastigma (Vitaceae): Morphological diversity and taxonomic implications . J Syst Evol, 2018, 56(4): 360-373.
[15] Shi-Yong Dong, Cheng-Wei Chen, Shi-Shi Tan, Hui-Guo Zhao, Zheng-Yu Zuo, Yi-Shan Chao, Yi-Han Chang. New insights on the phylogeny of Tectaria (Tectariaceae), with special reference to Polydictyum as a distinct lineage . J Syst Evol, 2018, 56(2): 139-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] XUE Jian-Ping ZHANG Ai-Min. Studies of Androgenesis in Cultured WheatAnthers from Different Genotypes[J]. Chin Bull Bot, 2002, 19(02): 215 -218 .
[2] Chen Yong-zhe. Propagation and Reproduction of Plants[J]. Chin Bull Bot, 1995, 12(03): 62 -64 .
[3] Hongbing Fu;Chongshi Cui;Xi Zhao;Qi Liu. Establishment of Cucurbita moschata Genetic Transformation System by Agrobacterium tumefaciens Transfection[J]. Chin Bull Bot, 2010, 45(04): 472 -478 .
[4] Yunfeng Liu;Hongwen Qin;Lei Shi;Huijin Zhang;Lian Liu;Chuangdao Jiang;Delu Wang. Effects of Submergence on Leaf Anatomy and Photoinhibition of Photosystem II in Oenanthe javanica Plants[J]. Chin Bull Bot, 2010, 45(04): 426 -434 .
[5] Yuxiu Zhang;Linfeng Li;Tuanyao Chai;Dan Lin;Hongmei Zhang. Mechanisms of manganese toxicity and manganese tolerance in plants[J]. Chin Bull Bot, 2010, 45(04): 506 -520 .
[6] Lijuan Wang, Linde Liu, Li Zhang, Yanjie Wang, Wei Lian, Zhongwu Jiang, Fuxing Zhang. Stigma Receptivity, Stigma Morphology and Fruit Set of Yantai Sweet Cherry (Cerasus avium)[J]. Chin Bull Bot, 2011, 46(1): 44 -49 .
[7] Zhou Yun-long. A Brief Introduction to Life History of Porphyra[J]. Chin Bull Bot, 1985, 3(02): 57 -59 .
[8] Zhang Zhong-ming. Current Status on Male Gametophyte and Fertilization in Ginkgo biloba[J]. Chin Bull Bot, 1997, 14(增刊): 6 -12 .
[9] Li Ming-qi and Tang Pei-song. Interrelation and Regulation of Energy Metabolism in Green Cells[J]. Chin Bull Bot, 1985, 3(01): 1 -7 .
[10] Mingzhang Wen*;Yue Chen;Ruisheng Gu;Jing Luo;Shengming Du. Basic Research in Plant Science and the Development of Agriculture in China[J]. Chin Bull Bot, 2008, 25(06): 633 -637 .