J Syst Evol ›› 2016, Vol. 54 ›› Issue (4): 416-437.doi: 10.1111/jse.12216

• Research Articles • Previous Articles     Next Articles

A comprehensive generic-level phylogeny of the sunflower family: Implications for the systematics of Chinese Asteraceae

Zhi-Xi Fu1, 2, Bo-Han Jiao1, 2, Bao Nie1, 2, Guo-Jin Zhang1, 2, Tian-Gang Gao1*, and China Phylogeny Consortium   

  1. 1State Key Laboratory of Systematic and Evolutionary Botany, Institute of Botany, Chinese Academy of Sciences, Beijing 10093, China 2University of the Chinese Academy of Sciences, Beijing 100049, China Members of China Phylogeny Consortium are listed in the Appendix.
  • Received:2016-04-16 Online:2016-06-17 Published:2016-07-25

Abstract: The sunflower family (Asteraceae) is the largest and the most diverse flowering plant family, comprising 24 000–30 000 species and 1600–1700 genera. In China, Asteraceae are also the largest family, with approximately 2336 indigenous species in 248 genera. In the past two decades, molecular phylogenetic analyses has contributed greatly to our understanding of the systematics of Asteraceae. Nevertheless, the large-scale analyses and knowledge about the relationships of Chinese Asteraceae at the generic level as a whole are far from complete due to difficulties in sampling. In this study, we presented a three-marker (rbcL, ndhF, and matK) phylogeny of Asteraceae, including 506 genera (i.e., approximately one-third of Asteraceae genera). The study sampled 200 Chinese genera (i.e., approximately 80% of Chinese Asteraceae genera). The backbones of the new phylogeny were largely congruent with earlier studies, with 13 subfamilies and 45 tribes recognized. Chinese Asteraceae were distributed in 7 subfamilies (Mutisioideae, Wunderlichioideae, Carduoideae, Pertyoideae, Gymnarrhenoideae, Cichorioideae, and Asteroideae) and 22 tribes (Mutiseae, Hyalideae, Cardueae, Pertyeae, Gymnarrheneae, Vernonieae, Cichorieae, Doroniceae, Senecioneae, Astereae, Anthemideae, Gnaphalieae, Calenduleae, Inuleae, Athroismeae, Helenieae, Coreopsideae, Neurolaeneae, Tageteae, Millieae, Eupatorieae, and Heliantheae). Chinese Asteraceae lacked 6 basal subfamilies and 23 tribes. Several previously ambiguous relationships were clarified. Our analyses also resolved some unplaced genera within Chinese Asteraceae. Finally, our phylogenetic tree was used to revise the classification for all genera of Chinese Asteraceae. In total, 255 genera, 22 tribes, and 7 subfamilies in China are recognized.

Key words: Asteraceae, China, classification, phylogeny, supermatrix.

[1] Bing Liu, Yun-Hong Tan, Su Liu, Richard G. Olmstead, Dao-Zhang Min, Zhi-Duan Chen, Nirmal Joshee, Brajesh N. Vaidya, Richard C. K. Chung, and Bo Li. Phylogenetic relationships of Cyrtandromoea and Wightia revisited: A new tribe in Phrymaceae and a new family in Lamiales . J Syst Evol, 2020, 58(1): 1-17.
[2] Lu-Liang Huang, Jian-Hua Jin, Cheng Quan, and Alexei A. Oskolski. Mummified Magnoliaceae woods from the upper Oligocene of South China, with biogeography, paleoecology, and wood trait evolution implications . J Syst Evol, 2020, 58(1): 89-100.
[3] Santiago Martín‐Bravo, Pedro Jiménez‐Mejías, Tamara Villaverde, Marcial Escudero, Marlene Hahn, Daniel Spalink, Eric H. Roalson, Andrew L. Hipp, and the Global Carex Group (Carmen Benítez-Benítez, Leo P. Bruederle, Elisabeth Fitzek, Bruce A. Ford, Kerry A. Ford, Mira Garner, Sebastian Gebauer, Matthias H. Hoffmann, Xiao-Feng Jin, Isabel Larridon, Étienne Léveillé-Bourret, Yi-Fei Lu, Modesto Luceño, Enrique Maguilla, Jose Ignacio Márquez‐Corro, Mónica Míguez, Robert Naczi, Anton A. Reznicek, and Julian R. Starr). A tale of worldwide success: Behind the scenes of Carex (Cyperaceae) biogeography and diversification . J Syst Evol, 2019, 57(6): 695-718.
[4] Shu-Li Wang, Lang Li, Xiu-Qin Ci, John G. Conran, and Jie Li. Taxonomic status and distribution of Mirabilis himalaica (Nyctaginaceae) . J Syst Evol, 2019, 57(5): 431-439.
[5] Santiago Andrés-Sánchez, G. Anthony Verboom, Mercè Galbany-Casals, and Nicola G. Bergh. Evolutionary history of the arid climate‐adapted Helichrysum (Asteraceae: Gnaphalieae): Cape origin and association between annual life‐history and low chromosome numbers . J Syst Evol, 2019, 57(5): 468-487.
[6] Qiu-Jie Zhou, Che-Wei Lin, Jin-Hong Dai, Ren-Chao Zhou, and Ying Liu. Exploring the generic delimitation of Phyllagathis and Bredia (Melastomataceae): A combined nuclear and chloroplast DNA analysis . J Syst Evol, 2019, 57(3): 256-267.
[7] Xiao-Yan Liu, Sheng-Lan Xu, Meng Han, and Jian-Hua Jin. An early Oligocene fossil acorn, associated leaves and pollen of the ring‐cupped oaks (Quercus subg. Cyclobalanopsis) from Maoming Basin, South China . J Syst Evol, 2019, 57(2): 153-168.
[8] Hyoung Tae Kim, Jung Sung Kim, You Mi Lee, Jeong-Hwan Mun, and Joo-Hwan Kim. Molecular markers for phylogenetic applications derived from comparative plastome analysis of Prunus species . J Syst Evol, 2019, 57(1): 15-22.
[9] Wu-Qin Xu, Jocelyn Losh, Chuan Chen, Pan Li, Rui-Hong Wang, Yun-Peng Zhao, Ying-Xiong Qiu, Cheng-Xin Fu. Comparative genomics of figworts (Scrophularia, Scrophulariaceae), with implications for the evolution of Scrophularia and Lamiales . J Syst Evol, 2019, 57(1): 55-65.
[10] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[11] Joseph T. Miler, Garry Jolley-Rogers, Brent D. Mishler, and Andrew H. Thornhill. Phylogenetic diversity is a better measure of biodiversity than taxon counting . J Syst Evol, 2018, 56(6): 663-667.
[12] Jun Wen, Li-Min Lu, Ze-Long Nie, Xiu-Qun Liu, Ning Zhang, Stefanie Ickert-Bond, Jean Gerrath, Steven R. Manchester, John Boggan, Zhi-Duan Chen. A new phylogenetic tribal classification of the grape family (Vitaceae) . J Syst Evol, 2018, 56(4): 262-272.
[13] Sadaf Habib, Viet-Cuong Dang, Stefanie M. Ickert-Bond, Jun Wen, Zhi-Duan Chen, Li-Min Lu. Evolutionary trends in Tetrastigma (Vitaceae): Morphological diversity and taxonomic implications . J Syst Evol, 2018, 56(4): 360-373.
[14] Vicki A. Funk. Collections-based science in the 21st Century . J Syst Evol, 2018, 56(3): 175-193.
[15] Shi-Yong Dong, Cheng-Wei Chen, Shi-Shi Tan, Hui-Guo Zhao, Zheng-Yu Zuo, Yi-Shan Chao, Yi-Han Chang. New insights on the phylogeny of Tectaria (Tectariaceae), with special reference to Polydictyum as a distinct lineage . J Syst Evol, 2018, 56(2): 139-147.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Ningzhen Huang, Chuanming Fu, Zhiguo Zhao, Fengluan Tang, Yunping Shi. Rapid Propagation in Vitro of Chiritopsis repanda var. guilinensis[J]. Chin Bull Bot, 2010, 45(06): 744 -750 .
[2] . [J]. Chin Bull Bot, 1994, 11(专辑): 44 .
[3] YAN Gui-PingMA Feng-MingHAN Tian-FuLI Wen-Hua. Applications of mRNA Differential Display in the Studies on Plant Development[J]. Chin Bull Bot, 2001, 18(01): 52 -57 .
[4] Lang Hui-qing and Jin Shu-ren. Research Methods of the Peat Plant Residu[J]. Chin Bull Bot, 1984, 2(05): 49 -51 .
[5] Zhou Ping;Pan Nai-sui;Liu Chun-qing and Chen Zhang-liang. Transfer of Sweet-Tasting Protein Thaumatin II Gene into Tobacco Using Ti-Plasmid Vector[J]. Chin Bull Bot, 1994, 11(04): 17 -20 .
[6] Wang Hong;Jian Ling-cheng and Zhang Ju-ren. Effect of The Cold-Resistor CR-4 on The Cold-Stability of the Mitochandrial Membrane Fluidity of Rice[J]. Chin Bull Bot, 1994, 11(03): 43 -44 .
[7] Liu Hou-fen and Cai Yao-yuan. Comparative Anatomical Study on Regenerated Roots from Explants Induced by Triacontanol[J]. Chin Bull Bot, 1984, 2(23): 66 -68 .
[8] LI Xin-Lei CHEN Fa-Di. Advances of Genetic Improvement and Germplasm Resources for Chrysanthemum[J]. Chin Bull Bot, 2004, 21(04): 392 -401 .
[9] Pan Jiong-guang;Xu Zhi-ling;Ma Zhong-wu;He Guan-fu and Yin Wan-fen. Studies on the Essential Oil Composition in Leaves of Fokienia Hodginsii (Dunn) Henry et Thomas[J]. Chin Bull Bot, 1991, 8(04): 48 -49 .
[10] Zhao Mei-hua and Jiang Fu-qing. The Karyotype Analysis of the Cell of Hedysarum seoparlum[J]. Chin Bull Bot, 1988, 5(02): 112 -113 .