J Syst Evol ›› 2018, Vol. 56 ›› Issue (6): 663-667.doi: 10.1111/jse.12436

• Research Articles • Previous Articles    

Phylogenetic diversity is a better measure of biodiversity than taxon counting

Joseph T. Miler1,2*, Garry Jolley-Rogers3, Brent D. Mishler4, and Andrew H. Thornhill1,4,5   

  1. 1National Research Collections Australia, CSIRO National Facilities and Collections, GPO Box 1600, Canberra, ACT 2601, Australia
    2Office of International Science and Engineering, National Science Foundation, Alexandria, VA 22314, USA
    3Whalan Place, Kaleen, ACT 2617, Australia
    4University and Jepson Herbaria, and Dept. of Integrative Biology, University of California, Berkeley, CA 94720-2465, USA
    5Australian Tropical Herbarium, James Cook University, Cairns, QLD 4870, Australia
  • Received:2018-02-06 Accepted:2018-05-31 Online:2018-12-14 Published:2018-12-13


Biodiversity is most commonly measured in taxonomic richness. For example, it is common to describe how diverse a genus or a geographic area is by counting the number of species within them. Phylogenetic diversity (PD), a measurement of the branch lengths in a phylogenetic tree, is a better measure of biodiversity that provides a comparable, evolutionary measure of biodiversity not possible with species counts. Despite its advantages, PD is rarely used as the primary measure of biodiversity. We developed a genus-level phylogeny for nearly 90% of taxonomically described Australian land plants and compared PD to genus richness in multiple clades. The proportion of PD per genera was skewed among clades. Non-angiosperm clades had more PD than expected given the number of genera while angiosperm clades had less PD than expected. For example, ferns comprised only 4.7% of the genera yet 13.0% of the PD, while the angiosperms as a whole comprised 78.9% of the genera but only 62.7% of the PD. It is likely that cultural reasons, such as taxonomic biases, are more important than methodological and biological phenomena in explaining these discrepancies. Regardless of reasons for the observed results, we conclude that a shift towards the use of PD as the primary descriptor of biodiversity will promote an important conceptual shift in biodiversity studies as a quantitative science.

Key words: angiosperm, biodiversity, land plant, phylogenetic diversity, phylogeny.

[1] Ying Yu, Hong-Mei Liu, Jun-Bo Yang, Wen-Zhang Ma, Silvia Pressel, Yu-Huan Wu, and Harald Schneider. Exploring the plastid genome disparity of liverworts . J Syst Evol, 2019, 57(4): 382-394.
[2] Ledis Regalado, Alexander R. Schmidt, Patrick Müller, Lisa Niedermeier, Michael Krings, and Harald Schneider. Heinrichsia cheilanthoides gen. et sp. nov., a fossil fern in the family Pteridaceae (Polypodiales) from the Cretaceous amber forests of Myanmar . J Syst Evol, 2019, 57(4): 329-338.
[3] Hong‐Mei Liu, Libor Ekrt, Petr Koutecky, Jaume Pellicer, Oriane Hidalgo, Jeannine Marquardt, Fatima Pustahija, Atsushi Ebihara, Sonja Siljak‐Yakovlev, Mary Gibby, Ilia Leitch, and Harald Schneider. Polyploidy does not control all: Lineage‐specific average chromosome length constrains genome size evolution in ferns . J Syst Evol, 2019, 57(4): 418-430.
[4] Cong-Li Xu, Tao Su, Jian Huang, Yong-Jiang Huang, Shu-Feng Li, Yi-Shan Zhao, and Zhe-Kun Zhou. Occurrence of Christella (Thelypteridaceae) in Southwest China and its indications of the paleoenvironment of the Qinghai–Tibetan Plateau and adjacent areas . J Syst Evol, 2019, 57(2): 169-179.
[5] Jonathan P. Price and Warren L. Wagner. Origins of the Hawaiian flora: Phylogenies and biogeography reveal patterns of long‐distance dispersal . J Syst Evol, 2018, 56(6): 600-620.
[6] Aarón Rodríguez, Arturo Castro-Castro, Georgina Vargas-Amado, Ofelia Vargas-Ponce, Pilar Zamora-Tavares, Jesús González-Gallegos, Pablo Carrillo-Reyes, Marco Anguiano-Constante, Marco Carrasco-Ortiz, Miguel García-Martínez, Brandon Gutiérrez-Rodríguez, Juvenal Aragón-Parada, Christian Valdes-Ibarra and Guadalupe Munguía-Lino. Richness, geographic distribution patterns, and areas of endemism of selected angiosperm groups in Mexico . J Syst Evol, 2018, 56(5): 537-549.
[7] Daniel Spalink, Jocelyn Pender, Marcial Escudero, Andrew L. Hipp, Eric H. Roalson, Julian R. Starr, Marcia J. Waterway, Lynn Bohs, and Kenneth J. Sytsma. The spatial structure of phylogenetic and functional diversity in the United States and Canada: An example using the sedge family (Cyperaceae) . J Syst Evol, 2018, 56(5): 449-465.
[8] Melanie A. Link-Pérez and Shawn W. Laffan. Fern and lycophyte diversity in the Pacific Northwest: Patterns and predictors . J Syst Evol, 2018, 56(5): 498-522.
[9] Jun Wen, AJ Harris, Stefanie M. Ickert-Bond, Rebecca Dikow, Kenneth Wurdack, Elizabeth A. Zimmer. Developing integrative systematics in the informatics and genomic era, and calling for a global Biodiversity Cyberbank . J Syst Evol, 2017, 55(4): 308-321.
[10] Jian-Li Zhao, Jinshun Zhong, Yong-Li Fan, Yong-Mei Xia, Qing-Jun Li. A preliminary species-level phylogeny of the alpine ginger Roscoea: Implications for speciation . J Syst Evol, 2017, 55(3): 215-224.
[11] Lian-Ming Gao, Yan Li, Loc Ke Phan, Li-Jun Yan, Philip Thomas, Long Ke Phan, Michael Möller, De-Zhu Li. DNA barcoding of East Asian Amentotaxus (Taxaceae): Potential new species and implications for conservation . J Syst Evol, 2017, 55(1): 16-24.
[12] Hong-Mei Liu, Shou-Zhou Zhang, Tao Wan, Peris W. Kamau, Zheng-Wei Wang, Aurelie Grall, Andreas Hemp, Harald Schneider. Exploring the pteridophyte flora of the Eastern Afromontane biodiversity hotspot . J Syst Evol, 2016, 54(6): 691-705.
[13] Zhi-Yuan Du, Qing-Feng Wang, China Phylogeny Consortium. Phylogenetic tree of vascular plants reveals the origins of aquatic angiosperms . J Syst Evol, 2016, 54(4): 342-348.
[14] Liming Cai, Hong Ma. Using nuclear genes to reconstruct angiosperm phylogeny at the species level: A casestudy with Brassicaceae species . J Syst Evol, 2016, 54(4): 438-452.
[15] Wei Wang, David L. Dilcher, Ge Sun, Hong-Shan Wang, Zhi-Duan Chen. Accelerated evolution of early angiosperms: Evidence from ranunculalean phylogeny by integrating living and fossil data . J Syst Evol, 2016, 54(4): 336-341.
Full text



[1] Kang Le. The Chemical Defenses of plants to phytophagous Insects[J]. Chin Bull Bot, 1995, 12(04): 22 -27 .
[2] HUANG Kai-Yao;GUO Hou-Liang and YI Ping. Effects of Salt Stress on Cell Structure and N2 Fixation in Blue-Green Alga Anabaena cylindrica[J]. Chin Bull Bot, 1998, 15(03): 54 -56 .
[3] Zhang Jing-tan. Abbreviations for Some Commonly Used Term[J]. Chin Bull Bot, 1985, 3(01): 57 -58 .
[4] DU Gui-Sen;ZANG Yu-Long and WANG Mei-Zhi. Study on Spore Morphology of 6 Species of The Family Pottiaceae in China[J]. Chin Bull Bot, 1998, 15(03): 57 -60 .
[5] TIAN Xin-Zhi. On Plant Illustration and Artistic Drawing and Painting[J]. Chin Bull Bot, 1999, 16(04): 470 -476 .
[6] DUAN Hai-Yan WANG Yun-Hua XU Fang-Sen. Advance on Genetic Aspects of Phosphorus Efficiency in Plants[J]. Chin Bull Bot, 2002, 19(04): 432 -438 .
[7] LI Xiu-Lan WU Cheng DENG Xiao-Jian YANG Zhi-Rong. Plant Height Genes and Their Progress of Molecular Biology Research in Rice[J]. Chin Bull Bot, 2003, 20(03): 264 -269 .
[8] LIU Hong-Tao LI Bing ZHOU Ren-Gang. Calcium_calmodulin Signal Transduction Pathway and Environment Stimulation[J]. Chin Bull Bot, 2001, 18(05): 554 -559 .
[9] Renyi Gui;Yadi Liu;Xiaoqin Guo;Haibao Ji;Yue Jia;Mingzeng Yu;Wei Fang*. Effects of Dose of 137Cs-γ Irradiation on Chlorophyll Fluorescence Parameters for Leaves of Seedlings of Phyllostachys heterocycla ‘Pubescens’[J]. Chin Bull Bot, 2010, 45(01): 66 -72 .
[10] Sanxiong Fu;Cunkou Qi*. Identification of Genes Differentially Expressed in Seeds of Brassica napus Planted in Nanjing and Lhasa by Arabidopsis Microarray[J]. Chin Bull Bot, 2009, 44(02): 178 -184 .