J Syst Evol ›› 2018, Vol. 56 ›› Issue (6): 621-636.doi: 10.1111/jse.12454

• Research Articles • Previous Articles     Next Articles

The odd one out or a hidden generalist: Hawaiian Melicope (Rutaceae) do not share traits associated with successful island colonization

Claudia Paetzold1*, Michael Kiehn2,3, Kenneth R. Wood3, Warren L. Wagner4, and Marc S. Appelhans1,4   

  1. 1Department of Systematics, Biodiversity and Evolution of Plants (with Herbarium), Goettingen University, Untere Karspuele 2, Goettingen, D-37073, Germany
    2Core Facility Botanical Garden, University of Vienna, Rennweg 14, A-1030, Austria
    3National Tropical Botanical Garden, 3530 Papalina Road, Kalaheo, HI 96741, USA
    4Department of Botany, National Museum of Natural History, Smithsonian Institution, P.O. Box 37012, MRC 166, Washington, DC 20013-7012, USA
  • Received:2018-02-14 Accepted:2018-07-16 Online:2018-12-13 Published:2018-12-13

Abstract: Oceanic islands are unique in their species composition, which is defined by arrival of colonizers via long distance dispersal followed by establishment of species followed in some cases by adaptive radiation. Evolutionary biologists identified traits facilitating successful colonization of islands as including polyploidy, self‐compatibility, herbaceousness and ability for long‐distance dispersal. Successful establishment and evolutionary diversification of lineages on islands often involves shifts to woodiness and shifts in methods of outcrossing as well as changes in dispersal ability. The genus Melicope colonized numerous archipelagos throughout the Pacific including the Hawaiian Islands, where the lineage comprises currently 54 endemic species and represents the largest radiation of woody plants on the islands. The wide distributional range of the genus illustrates its high dispersibility, most likely due to adaption to bird dispersal. Here we investigate ploidy in the genus using flow cytometry and chromosome counting. We find the genus to be paleopolyploid with 2n = 4x = 36, a ploidy level characterizing the entire subfamily Amyridoideae and dating back to at least the Palaeocene. Therefore Hawaiian Melicope have not undergone recent polyploidization prior to colonization of the islands. Thus Melicope retained colonization success while exhibiting a combination of traits that typically characterize well established island specialists while lacking some traits associated to successful colonizers.

Key words: bird dispersal, colonization, establishment, long distance dispersal, Pacific, polyploidy

[1] Shira Penner, Barak Dror, Iris Aviezer, Yamit Bar-Lev, Ayelet Salman-Minkov, Terezie Mandakova, Petr Šmarda, Itay Mayrose, and Yuval Sapir. Phenology and polyploidy in annual Brachypodium species (Poaceae) along the aridity gradient in Israel . J Syst Evol, 2020, 58(2): 189-199.
[2] Ana Otero, Pedro Jiménez-Mejías, Virginia Valcárcel, and Pablo Vargas. Worldwide long‐distance dispersal favored by epizoochorous traits in the biogeographic history of Omphalodeae (Boraginaceae) . J Syst Evol, 2019, 57(6): 579-593.
[3] Virginia Valcárcel and Jun Wen. Chloroplast phylogenomic data support Eocene amphi‐Pacific early radiation for the Asian Palmate core Araliaceae . J Syst Evol, 2019, 57(6): 547-560.
[4] Gisela M. Via do Pico, Yanina J. Pérez, María B. Angulo, and Massimiliano Dematteis. Cytotaxonomy and geographic distribution of cytotypes of species of the South American genus Chrysolaena (Vernonieae, Asteraceae) . J Syst Evol, 2019, 57(5): 451-467.
[5] Stanislav Španiel, Karol Marhold and Judita Zozomová-Lihová. Polyphyletic Alyssum cuneifolium (Brassicaceae) revisited: Morphological and genome size differentiation of recently recognized allopatric taxa . J Syst Evol, 2019, 57(3): 287-301.
[6] Marc S. Appelhans, Jun Wen, Marco Duretto, Darren Crayn, Warren L. Wagner. Historical biogeography of Melicope (Rutaceae) and its close relatives with a special emphasis on Pacific dispersals . J Syst Evol, 2018, 56(6): 576-599.
[7] Nattapon Nopporncharoenkul, Jatuporn Chanmai, Thaya Jenjittikul, Kesara Anamthawat-Jónsson, Puangpaka Soontornchainaksaeng. Chromosome number variation and polyploidy in 19 Kaempferia (Zingiberaceae) taxa from Thailand and one species from Laos . J Syst Evol, 2017, 55(5): 466-476.
[8] Jonathan P. Spoelhof, Pamela S. Soltis, Douglas E. Soltis. Pure polyploidy: Closing the gaps in autopolyploid research . J Syst Evol, 2017, 55(4): 340-352.
[9] Harald Schneider, Hong-Mei Liu, Yan-Fen Chang, Daniel Ohlsen, Leon R. Perrie, Lara Shepherd, Michael Kessler, Dirk Karger, Sabine Hennequin, Jeannine Marquardt, Stephen Russell, Stephen Ansell, Ngan Thi Lu, Peris Kamau, Josmaily Lóriga Pineiro, Ledis Regalado, Jochen Heinrichs, Atsushi Ebihara, Alan R. Smith, Mary Gibby. Neo- and Paleopolyploidy contribute to the species diversity of Asplenium—the most species-rich genus of ferns . J Syst Evol, 2017, 55(4): 353-364.
[10] Sue Sherman-Broyles, Aureliano Bombarely, Jeff Doyle. Characterizing the allopolyploid species among the wild relatives of soybean: Utility of reduced representation genotyping methodologies . J Syst Evol, 2017, 55(4): 365-376.
[11] AJ Harris, Ping-Ting Chen, Xin-Wei Xu, Jian-Qiang Zhang, Xue Yang, Jun Wen. A molecular phylogeny of Staphyleaceae: Implications for generic delimitation and classical biogeographic disjunctions in the family . J Syst Evol, 2017, 55(2): 124-141.
[12] Erin M. Sigel. Genetic and genomic aspects of hybridization in ferns . J Syst Evol, 2016, 54(6): 638-655.
[13] Li-Na Sha, Xing Fan, Hai-Qin Zhang, Hou-Yang Kang, Yi Wang, Xiao-Li Wang, Xiao-Fang Yu, Yong-Hong Zhou. Phylogeny and molecular evolution of the DMC1 gene in the polyploid genus Leymus (Triticeae: Poaceae) and its diploid relatives . J Syst Evol, 2016, 54(3): 250-263.
[14] Stefanie M. Ickert-Bond, Susanne S. Renner. The Gnetales: Recent insights on their morphology, reproductive biology, chromosome numbers, biogeography, and divergence times . J Syst Evol, 2016, 54(1): 1-16.
[15] Zhe-Chen Qi, Yi Yu, Xiang Liu, Andrew Pais, Thomas Ranney, Ross Whetten, Qiu-Yun (Jenny) Xiang. Phylogenomics of polyploid Fothergilla (Hamamelidaceae) by RAD-tag based GBS—insights into species origin and effects of software pipelines . J Syst Evol, 2015, 53(5): 432-447.
Full text



[1] Fusuo Zhang Zhenling Cui Jiqing Wang Chunjian Li Xinping Chen . Current status of soil and plant nutrient management in China and improvement strategies.[J]. Chin Bull Bot, 2007, 24(06): 687 -694 .
[2] Xu Xinrong and Shao Huaying. The Scanning Electron Microscopic Observation of Pollen Grains of two Species of Pharbitis[J]. Chin Bull Bot, 1983, 1(02): 54 .
[3] Xiang Feng-ning;Zhang Ju-ren;Gao Shu-fang and Chen Hui-min. Studies on The Transplantation of Regenerated Plantlets of Maize[J]. Chin Bull Bot, 1993, 10(02): 52 -53 .
[4] Guoqi Song, Xingjun Wang, Aiqin Li, Changsheng Li. Research Progress in Suspensor of Angiosperms[J]. Chin Bull Bot, 2012, 47(2): 188 -195 .
[5] Manlan Zhu, Liangsheng Wang, Huijin Zhang, Yanjun Xu, Xuchen Zheng, Lijin Wang. Relationship Between the Composition of Anthocyanins and Flower Color Variation in Hardy Water Lily (Nymphaea spp.) Cultivars[J]. Chin Bull Bot, 2012, 47(5): 437 -453 .
[6] Mao Xue-wen. A Problem Worth to Discuss - Asexual Reproduction and Vegetative Propagation of Plant[J]. Chin Bull Bot, 1992, 9(04): 56 -58 .
[7] WU Hui, DAI Hai-Fang, ZHANG Ju-Song, JIAO Xiao-Ling, LIU Cui, SHI Jun-Yi, FAN Zhi-Chao, and ALIYAN?Rouzi. Responses of photosynthetic characteristics to low temperature stress and recovery treatment in cotton seedling leaves[J]. Chin J Plan Ecolo, 2014, 38(10): 1124 -1134 .
[8] XU Ge-Xi, LUO Shui-Xing, GUO Quan-Shui, PEI Shun-Xiang, SHI Zuo-Min, ZHU Li, and ZHU Ni-Ni. Responses of leaf unfolding and flowering to climate change in 12 tropical evergreen broadleaf tree species in Jianfengling, Hainan Island[J]. Chin J Plan Ecolo, 2014, 38(6): 585 -598 .
[10] WU Yun-Na, LI Zheng-Hai. Changing of Landscape Diversity with Time in Xilinguole Steppe[J]. Chin J Plan Ecolo, 2000, 24(1): 58 -63 .