J Syst Evol ›› 2019, Vol. 57 ›› Issue (3): 247-255.doi: 10.1111/jse.12432

• Research Articles • Previous Articles     Next Articles

Molecular diagnosis for a Tamarix species from two reclaimed lands along the Yellow Sea in Korea inferred from genome wide SNP markers

Soo-Rang Lee1, John F. Gaskin2, and Young-Dong Kim1*   

  1. 1Life Science Hall # 8311, Hallym University, Hallymdaehak-gil, Chuncheon-si, Gangwon-do 24252, S Korea
    2USDA Agricultural Research Service, 1500 North Central Avenue, Sidney, Montana 59270, USA
  • Received:2018-01-25 Accepted:2018-05-21 Online:2018-09-07 Published:2019-06-06

Abstract: The taxonomy and phylogenetic relationships of related taxa are important for understanding the biology of a species. Also, spatial distribution of genetic variation may offer insights into history of range shifts and demographic changes. The genus Tamarix L. from the Old World is a taxonomically challenging group that has widely expanded its range in the recent past. We examined genomic diversity patterns and the taxonomic identities of Korean Tamarix species whose taxonomy has remained unresolved. We used a total of 1773 SNP data from genotyping by sequencing for 37 Tamarix plants representing two species; T. chinensis and T. ramosissima to infer species delimitation and the geographic distribution of genomic diversity. Clustering (STRUCTURE; PCA, neighbor joining) and phylogenetic tree results indicated that the two morphologically similar species T. chinensis and T. ramosissima are genetically distinct and the two Korean populations (Sihwa & Songdo) are clustered closely with T. chinensis. Approximate Bayesian Computation based hypothesis testing results suggested that one of the two Korean populations, Songdo might have primarily been derived from the native area, China, followed by range expansion to Sihwa with a secondary admixture event between an established population, Songdo, and a native population, Beijing.

Key words: ABC, clustering analysis, GBS, genetic structure, Tamarix (tamarisk), taxonomy

[1] Jose L. Villar, M. Ángeles Alonso, Ana Juan, John F. Gaskin, and Manuel B. Crespo. Out of the Middle East: New phylogenetic insights in the genus Tamarix (Tamaricaceae) . J Syst Evol, 2019, 57(5): 488-507.
[2] Shan-Shan Li, Hai-Fei Zhou, Wen-Li Chen, Juan Yan, Zhe Cai, Ruo-Xun Wei, Chih-Hui Chen, Bin Han, Jian-Qiang Li, Tao Sang and Song Ge. Population genetics and evolutionary history of Miscanthus species in China . J Syst Evol, 2019, 57(5): 530-542.
[3] David Gutiérrez-Larruscain, Santiago Andrés-Sánchez, Enrique Rico, and María Montserrat Martínez-Ortega. Advances in the systematics and evolution of western Mediterranean representative species of the Pentanema conyzae clade through genetic fingerprinting . J Syst Evol, 2019, 57(1): 42-54.
[4] Zhi-Yao Ma, Jun Wen, Jing-Pu Tian, Abbas Jamal, Long-Qing Chen, Xiu-Qun Liu. Testing reticulate evolution of four Vitis species from East Asia using restriction‐site associated DNA sequencing . J Syst Evol, 2018, 56(4): 331-339.
[5] Farzaneh Habibi, Petr Vít, Mohammadreza Rahiminejad, Bohumil Mandák. Towards a better understanding of the Chenopodium album aggregate (Amaranthaceae) in the Middle East: A karyological, cytometric and morphometric investigation . J Syst Evol, 2018, 56(3): 231-242.
[6] Shi-Yong Dong, Cheng-Wei Chen, Shi-Shi Tan, Hui-Guo Zhao, Zheng-Yu Zuo, Yi-Shan Chao, Yi-Han Chang. New insights on the phylogeny of Tectaria (Tectariaceae), with special reference to Polydictyum as a distinct lineage . J Syst Evol, 2018, 56(2): 139-147.
[7] S. Robbert Gradstein, Rui-Liang Zhu, Lei Shu, Álvaro J. Pérez. Reinerantha foliicola, a new genus and species of Lejeuneaceae subtribe Cololejeuneinae (Marchantiophyta) from Ecuador . J Syst Evol, 2018, 56(1): 67-75.
[8] Nadja Korotkova, Gerald Parolly, Anahit Khachatryan, Lusine Ghulikyan, Harutyun Sargsyan, Janna Akopian, Thomas Borsch, Michael Gruenstaeudl. Towards resolving the evolutionary history of Caucasian pears (Pyrus, Rosaceae)—Phylogenetic relationships, divergence times and leaf trait evolution . J Syst Evol, 2018, 56(1): 35-47.
[9] Živa Fišer Pečnikar, Nataša Fujs, Robert Brus, Dalibor Ballian, Elena Buzan. Insights into the plastid diversity of Daphne blagayana Freyer (Thymelaeaceae) . J Syst Evol, 2017, 55(5): 437-445.
[10] Jun Wen, AJ Harris, Stefanie M. Ickert-Bond, Rebecca Dikow, Kenneth Wurdack, Elizabeth A. Zimmer. Developing integrative systematics in the informatics and genomic era, and calling for a global Biodiversity Cyberbank . J Syst Evol, 2017, 55(4): 308-321.
[11] Robabeh Shahi Shavvon, Shahrokh Kazempour Osaloo, Ali Asghar Maassoumii, Farideh Moharrek, Seher Karaman Erkul, Alan R. Lemmon, Emily Moriarty Lemmon, Ingo Michalak, Alexandra N. Muellner-Riehl, Adrien Favre. Increasing phylogenetic support for explosively radiating taxa: The promise of high-throughput sequencing for Oxytropis (Fabaceae) . J Syst Evol, 2017, 55(4): 385-404.
[12] Sue Sherman-Broyles, Aureliano Bombarely, Jeff Doyle. Characterizing the allopolyploid species among the wild relatives of soybean: Utility of reduced representation genotyping methodologies . J Syst Evol, 2017, 55(4): 365-376.
[13] Thaís Elias Almeida, Alexandre Salino. State of the art and perspectives on neotropical fern and lycophyte systematics . J Syst Evol, 2016, 54(6): 679-690.
[14] Paulo C. Baleeiro, Richard W. Jobson, Paulo T. Sano. Morphometric approach to address taxonomic problems: The case of Utricularia sect. Foliosa (Lentibulariaceae) . J Syst Evol, 2016, 54(2): 175-186.
[15] Cristina Salmeri, Cristian Brullo, Salvatore Brullo, Giampietro Giusso Del Galdo, Ivan I. Moysiyenko. What is Allium paniculatum? Establishing taxonomic and molecular phylogenetic relationships within A. sect. Codonoprasum . J Syst Evol, 2016, 54(2): 123-135.
Viewed
Full text


Abstract

Cited

  Shared   
  Discussed   
[1] Yu Feng-lan;Wang Jing-ping;Li Jing-min and Shan Xue-qin. The Isolation and Identification of Sterols and Other Constituents from Seed Fat of Sapium sebiferum[J]. Chin Bull Bot, 1989, 6(02): 121 -123 .
[2] LI Al-Fen;CHEN Min amd ZHOU Bai-Cheng. Advances and Problems in Studies of Photosynthetic Pigment-Protein Complexes of Brown Algae[J]. Chin Bull Bot, 1999, 16(04): 365 -371 .
[3] CHEN Xiao-Mei and GUO Shun-Xing. Research Advances in Plant Disease Resistive Material[J]. Chin Bull Bot, 1999, 16(06): 658 -664 .
[4] LI Ji-Quan JIN You-Ju SHEN Ying-Bai HONG Rong. The Effect of Environmental Factors on Emission of Volatile Organic Compounds from Plants[J]. Chin Bull Bot, 2001, 18(06): 649 -656 .
[5] . [J]. Chin Bull Bot, 2005, 22(增刊): 157 .
[6] Jianxia Li, Chulan Zhang, Xiaofei Xia, Liangcheng Zhao. Cryo-sectioning Conditions and Histochemistry Comparison with Paraffin Sectioning[J]. Chin Bull Bot, 2013, 48(6): 643 -650 .
[7] JIANG Yang-Ming, CUI Wei-Hong, and DONG Qian-Lin. Comprehensive evaluation and analysis of tobacco planting environment based on space technology[J]. Chin J Plan Ecolo, 2012, 36(1): 47 -54 .
[8] Hu Cheng-biao, Zhu Hong-guang, Wei Yuan-lian. A Study on Microorganism and Biochemical Activity of Chinese-fir Plantation on Different Ecological Area in Guangxi[J]. Chin J Plan Ecolo, 1991, 15(4): 303 -311 .
[9] Hong-Xin SU Fan BAI Guang-Qi LI. Seasonal dynamics in leaf area index in three typical temperate montane forests of China: a comparison of multi-observation methods[J]. Chin J Plan Ecolo, 2012, 36(3): 231 -242 .
[10] AN Ran, GONG Ji-Rui, YOU Xin, GE Zhi-Wei, DUAN Qing-Wei, YAN Xin. Seasonal dynamics of soil microorganisms and soil nutrients in fast-growing Populus plantation forests of different ages in Yili, Xinjiang, China[J]. Chin J Plan Ecolo, 2011, 35(4): 389 -401 .