J Syst Evol ›› 1989, Vol. 27 ›› Issue (6): 439-450.

• Research Articles • Previous Articles     Next Articles

Cytotaxonomical Studies on Liliaceae (s.l.): (2) Report on Chromosome Numbers and Karyotypes of 8 Species of 8 Genera from Zhejiang, China

Fu Cheng‐Xin, Hong De‐Yuan   

  • Published:1989-11-10

Abstract: Eight species in eight genera of Liliaceae from Zhejiang were cytotaxonomically studied in this work. The karyotypes of Chinese materials of these species are mostly reported for the first time. The results are shown as follows (see Table 2-4 for chromosome parameters of them): 1. Disporum sessile D. Don Sixteen chromosomes are counted at metaphase of roottip cells.The Karyotype formula is 2n=16=2lm+2sm+4st+2sm+3sm+ 1sm(SAT)+2st (Plate 1: 2-3, see Fig. 1:1 for its idiogram). The Karyotype belongs to 3B in Stebbins’ (1971) karyotype classification, and consists of four pairs of larger chromosomes (1-4) and four pairs of smaller chromosomes (5-8). One SAT-chromosome is situated at the sixth pair. The chromosomes range between 4.85-16.63μm. The karyotypic constitution is similar to that of Japanese material reported by Noguchi (1974). Chang and Hsu (1974) reported 2n=14=13st+1sm and 2n= 16=2m + 13st + 1sm for the material from Taiwan under the name of D. shimadai Hay. (=D. sessile D. Don). Compared with our result of D. sessile, the differences are obvious. 2. Polygonatum odoratum (Mill.) Druce PMCs diakinesis shows eleven bivalents, n = 11, 5 large and 6 small (Plate 2:5). The meiosis is normal. The majority of reports of this species are 2n=20, with a few 2n=22 and 30 (see Table 1). The materials from southen Siberia and the Far East in USSR are all of 2n= 20. Our result is the same as recorded by Jinno (1966) in the Japanese material and by Li (1980) from Beijing. Ge (1987) reported 2n=20 in the cultivated individuals of Shandong, China, showing that both 2n=20 and 22 exist in China. 3. Scilla scilloides (Lindl.) Druce This species has the somatic chromosome number 2n=18 (Plate 1: 4-6, see Fig. 1:2 for its idiogram), of which two groups of chromosomes can be recognized, i.e. the 1 st -5 th pairs of large and the 6 th-9th pairs of small chromosomes. A distinct character of the karyotype is that two satellites are attached to the short arms of the 1st pair of chromosomes. The degree of asymmetry is of 3C. The karyotype formula is 2n = 18 = 2sm (SAT) + 6st + 2t+ 6m + 2sm. The chromosomes range from 2.02 to 11.93 μm. The Previous counts on the species are 2n = 16, 18, 26, 34, 35, 36 and 43 (see Table 1). The present investigation confirms Noda’s and Haga’s results. The species is considered to be of two genomes, namely A(x = 8) and B(x = 9). Our result shows a genome composition of BB, having a pair of large SAT-chromosomes. Chang and Hsu (1974) reported 2n = 34 from a population of Taiwan, an amphidiploid (AABB), Karyotypes of other Chinese populations are worth further researches. 4. Tricyrtis macropoda Miq. The chromosome number of somatic cells is 2n= 26, and PMCs MII shows 13 bivalents (n= 13) (Plate 3:1-3, see Fig. 1:3 for its idiogram). The karyotype formula is 2n= 26= 6m + 10sm + 6st + 4st (or t), which is composed of chromosomes: 4L + 22S in size. The degree of asymmetry is of 3B. No centromeres of the 12th and 13th pairs of chromosomes were observed at metaphase, and the chromosomes may be of st or t. Nakamura (1968) reported 2n= 26(4L+ 22S)= 2sm+ 2sm-st+ 14st-sm+ 8st for T. macropoda Miq. and 2n= 26(4L+ 22S)= 8m+ 2sm+2sm-st+ 2st-sm+ 12st for its ssp. affinis, both from Japan. It is clear that the major character of their karyotypes, i. e. 4L + 22S, is consistent with that reported here. Based on the previous and present reports, all Tricyrtis species studied are remarkably uniform in the basic karyotype, i. e. 4L + 22S. 5. Allium macrostemon Bunge. The present observation on the root-tip cells of the species shows 2n = 32 (Plate 3: 4-5, see Fig. 1:4 for its idiogram). The karyotype formula is 2n (4x)= 32= 26m + 6sm, which belongs to 2B, being of high symmetry. Except the 6th, 10th and 13th pairs of chromosomes all the are metacentric. Chromosomes of this species are large, ranging from 5.94 to 18.06 μm. Our result agrees with Kawano’s (1975) report under the name of A. grayi Regel ( = A. macrostemon, Wang and Tang 1980). 6. Asparagus cochinchinensis (Lour.) Merr. Ten bivalents were observed in PMCs MI, n=10 (Plate 1: 1). The present result confirms the number of a population of Taiwan recorded by Hsu (1971). 7. Ophiopogon japonicus (L. f.) Ker-Gawl. The species from Mt. Taogui, Hangzhou, is found to have 2n (2x)=36=22m + 14sm (Plate 2: 1,5, see Fig. 1:5 for its idiogram) which belongs to 2B. The karyotype is composed of 2 medium-sized chromosomes with metacentric centromeres and 34 small chromosomes, ranging from 1.34 to 4.92 μm. The populations from Mt. Tianzhu and Mt. Yuling, Zhejiang, are found to be aneuploids at tetraploid level (2n=64-70). It is interesting that Nagamatsu (1971) found the karyotypes of Japanese materials to be 2n= 67 and 68, also showing unsteady 4x karyotypes of this species. In the previous. reports (see Table 1), the chromosome numbers of this species are mainly 2n = 72, besides 2n = 36 recorded by Sato (1942) from Japan. 8. Liriope platyphylla Wang et Tang The somatic complement of the species collected from Mt. Tianzhu, Hangzhou, is 2n = 36 (Plate 2: 3-4, see Fig. 1:6 for its idiogram). The karyotype is 2n(2x) = 36 = 16m + 20sm, belonging to 2B type. The chromosomes are small except the medium-sized, 1st pair and the range is from 1.27 to 5.19μm. The material from Mt. Yuling, Zhejiang, is found to have a variety of chromosome numbers (2n= 60-71), as observed in Ophiopogon japonicus. Hasegawa (1968) reported the karyotype of 2n = 72 (4x) from Japan The 2x karyotype is first recorded. This genus is closely related to Ophiopogon. Based on the Hasegawa’s and present studies, all the species in these two genera are remarkably uniform in karyo-type. Therefore, the taxonomy of the two genera is worth further researches.

Key words: Karyotype, Cytotaxonomy, Liliaceae, Zhejiang, China