J Syst Evol ›› 1992, Vol. 30 ›› Issue (4): 320-330.

• Research Articles • Previous Articles     Next Articles

Comparative Studies on Photosynthetic Fluorescence Spectra and Fluorescence Kinetics of Bryophytes

Shi Ding-Ji, Wu Pan-Cheng, Qiu Yuan-Yuan, Wang Mei-Zhi   

  • Published:1992-08-10

Abstract: Bryophytes are the transitional forms from water habitants to terrestrials, however, there have been only a few works on their photosynthesis. It was the first time to study on photosynthetic fluorescence spectra and fluorescence kinetics of primitive and advanced species comparatively. Both the primitive and advanced ones had the same fluorescence spectra at room temperature, which contained two maximum emissions: F686-690 from the Photosystem II and F736-740 from the Photosystem I. And then, there were three maximum emissions in the fluorescence spectra at 77K :F687-689 and F697-699 from Photosystem II, and F723-734 from Photosystem I. The first two maximum emissions were the same for both the primitive and advanced species. According to the third maximum emission the bryophytes under study fell into two categories: The first one possessing the maximum emission around 725 nm, including Ditrichum flexicaule , Didymodon icmadophyllum , Didymodon rigidicaulis, Aloina obliquifolia, Plagiomnium confertidens and Marchantia polymorpha, which were primitive mosses and advanced liverwort. The second one possessing the maximum emission around 732nm, including Thuidium delicatulum , Pylaisia brotheri , Myuroclada maximowiczii , Taxiphyllum taxirameum, Gollania neckerella, Eurohypnum leptothallum, which were advanced mosses, and the primitive one Plagiomnium rostratum. The characteristics of fluorescence spectra implied that the Photosystem II was conservative and Photosystem I was changeable during bryophyte evolution. The primitive mosses possess mainly the PSI core complex (CPI) and then the advanced species contain both CPI and LHC-I. In analysis of photosynthetic fluorescence kinetics, Fv/(Fc+Fv) is a measure of the activity of the Photosystem II; Fv/Fm is dependent on efficiency of primary photoconversion in the Photosystem II; Fm/(Fo+Fv) is related to photosynthetic carbon assimilation; and Fd/Fs is a measure of the potential photosynthetic quantum conversion. The fluorescence kinetics of the bryophyte photosynthesis showed that the Photosystem II activity, the efficieiency of primary photoconversion in Photosystem II, the photosynthetic carbon assimilation and the efficiency of the potential photosynthetic quantum conversion in primitive species, such as Ditrichum flexicaule, Didymodon icmadophyllus, D. rigidicaulis, Plagiomnium rostratum and the liverwort Marchantia polymorpha, were lower than those in the advanced species, Myuroclada maximowiczii, Pylaisia brotheri , Gollania neckerella Taxiphyllum taxirameum , Thuidium delicatulum. However, the primitive Plagiomnium confertidens was of the high activities and efficiencies and the advanced Eurohypnum leptothallum was of low ones. It seemed that P. confertidens and E. leptothallum were an intermediatefrom the primitive to the advanced.

Key words: Bryophytes, Photosynthetic fluorescence spectrum, Fluorescence kinetics, Photosynthesis evolution, Photosystem I Core complex and antenna complex, Photosystem II