J Syst Evol ›› 2000, Vol. 38 ›› Issue (3): 211-217.

• Research Articles • Previous Articles     Next Articles

Evolution of Internal Transcribed Spacer Region of Nuclear Ribosomal DNA in Allopolyploids of Aegilops

WANG Chao, WANG Jian-Bo, SHI Su-Hua, ZHONG Yang   

  • Published:2000-05-10

Abstract: Hybridization with subsequent polyploidy is a prominent process in evolution of higher plants, but few data address the evolution of homeologous sequences after polyploidy. The internal transcribed spacer (ITS) of nuclear ribosomal DNA (nrDNA) from eleven allopolyploid species in Aegilops was investigated by PCR amplification and direct sequencing. The sequences obtained were used to study the evolution of ITS region in allopolyploid species. The length of ITS region varied from 599 to 606 bp and the number of variable sites was 93, i.e. 51 and 42 for ITS1 and ITS2 re spectively. Some polymorphic sites were observed in polyploid species, and this indicated that the ancestral sequences had not been homogenized completely by concerted evolution. Distance matrix analysis of diploid and polyploid species by neighbor-joining method, using Triticum monococcum as outgroup, resulted in well-resolved neighbor-joining tree indicating that the ITS regions of UUMM and UUSS genome ( sect. Vertebrata) were homogenizing toward those of UU ancestal genome. This result is in agreement with the results of ctyogenetics of Aegilops. On the other hand, the neighbor joining tree including the D-genome group species (sect. Cylindropyrum and sect. Polyeides ) com prised three clades (CC-DDCC, UU-DDMM-DDMMSS-DDMMUU and MM-DDMvMv), which sug gested that concerted evolution was homogenizing the ITS region of the polyploid derivatives to either of their ancestors.

Key words: Aegilops, Allopolyploid, ITS sequence, Evolution